Citation: Wu Weirong, Yuan Xiaomin, Hou Hua, Wang Baoshan. Theoretical Investigations on the Mechanisms for the Reactions of Sevoflurane Radicals[(CF3)2C(·)OCH2F, (CF3)2CHOC(·)HF] with O2 and the OH· Radicals Regeneration[J]. Acta Chimica Sinica, ;2018, 76(10): 793-801. doi: 10.6023/A18080317 shu

Theoretical Investigations on the Mechanisms for the Reactions of Sevoflurane Radicals[(CF3)2C(·)OCH2F, (CF3)2CHOC(·)HF] with O2 and the OH· Radicals Regeneration

  • Corresponding author: Wang Baoshan, baoshan@whu.edu.cn
  • Received Date: 4 August 2018
    Available Online: 17 October 2018

    Fund Project: the National Key Research and Development Program of China 2017YFB0902500Project supported by the National Key Research and Development Program of China (No. 2017YFB0902500) and Science and Technology Project of State Grid Corporation of China: The key Technology of Environment-Friendly Gas-Insulated Transmission Line (GIL)

Figures(4)

  • Sevoflurane is an excellent volatile anaesthetic which has been widely in clinical use. However, it was found that sevoflurane is a potent green-house gas with a significant global warming potential. Atmospheric degradation of sevoflurane is desired for its long-term application. The reaction of sevoflurane with hydroxyl radicals (OH·) produces two radical species, namely, (CF3)2C(·)OCH2F and (CF3)2CHOC(·)HF, which have different reactivity. Under the low-NO atmospheric conditions, it was found that both radical fragments enable to initialize the regeneration of OH·radicals in the presence of molecular oxygen (O2). Microscopic mechanisms for the reactions of the two radicals with O2 have been investigated for the first time in this work. Geometries of various intermediates and transition states on the doublet potential energy surfaces were optimized at the M06-2X/6-311++G (d, p) level of theory. Moreover, the single-point calculations were carried out using the composite model CBS-Q to refine the reaction energetics to the chemical accuracy. It was revealed that the formation of peroxy intermediate (RO2·) undergoes via the definitive barriers of 1.3 or 1.8 kcal·mol-1, in contrast to the barrierless association between the alkyl radicals and O2. Apparently, the association of the fluorinated alkyl radicals with O2 takes place more slowly due to the substitute effect. Although the addition of O2 to the fluorine-rich radical site is more preferable than that to the fluorine-poor site, the latter is more exothermic in view of the exothermicity of the intermediates RO2·. The barriers for the subsequent H-migration of RO2·to form the QOOH intermediates are 17.9 and 21.5 kcal·mol-1, respectively. Both barriers lie well below the reactant asymptote, indicating the isomerization paths are energetically favorable. Decomposition of QOOH takes place via three competitive mechanisms, including the step-wise bond fission, the three-body concerted cleavage, and the four-center intramolecular SN2 reaction, to produce OH·radicals predominantly. All the reaction pathways could be competitive for (CF3)2C(OC(·)HF)OOH because the energies of the corresponding barriers are close. In contrast, only the SN2 displacement energetic route is dominant for (CF3)2C(·)OC(HF)(OOH). Neither step-wise nor three-body pathways is important because the barrier height is roughly 7 kcal·mol-1 higher than that for the SN2 pathway. The isomerization of QOOH to alkoxy intermediate is of little importance due to the significant barrier even though it is highly exothermic. Implication of the current theoretical findings in the OH·radicals recycling reaction in atmosphere has been illustrated.
  • 加载中
    1. [1]

      Singh, H. J.; Gour, N. K.; Rao, P. K.; Tiwari, L. J. Mol. Model. 2013, 19(11), 4815.  doi: 10.1007/s00894-013-1977-7

    2. [2]

      Wang, C.; Wen, J.; He, H.; Wang, L. Mole. Phys. 2014, 112(22), 2987.  doi: 10.1080/00268976.2014.925148

    3. [3]

      Sekiya, A.; Misaki, S. J. Fluorine Chem. 2000, 101(2), 215.  doi: 10.1016/S0022-1139(99)00162-1

    4. [4]

      Sulbaek Andersen, M. P.; Sander, S. P.; Nielsen, O. J.; Wagner, D. S.; Sanford, T. J.; Wallington, T. J. Brit. J. Anaesth. 2010, 105(6), 760.  doi: 10.1093/bja/aeq259

    5. [5]

      Brown, A. C.; Canosa-Mas, C. E.; Parr, A. D.; Wayne, R. P. Atmos. Environ. 1990, 24(9), 2499.  doi: 10.1016/0960-1686(90)90341-J

    6. [6]

      Zhu, P.; Duan, X.; Liu, J. J. Fluorine Chem. 2015, 176, 61.  doi: 10.1016/j.jfluchem.2015.05.014

    7. [7]

      Wilson, Jr. E. W.; Hamilton, W. A.; Mount, H. R. J. Phys. Chem. A 2007, 111(9), 1610.  doi: 10.1021/jp068355d

    8. [8]

      Vollmer, M. K.; Rhee, T. S.; Rigby, M.; Hofstetter, D.; Hill, M.; Schoenenberger, F.; Reimann, S. Geophys. Res. Lett. 2015, 42, 1606.  doi: 10.1002/2014GL062785

    9. [9]

      Brown, A. C.; Canosa-Mas, C. E.; Parr, A. D.; Pierce, J. M. T.; Wayne, R. P. Nature 1989, 341, 635.  doi: 10.1038/341635a0

    10. [10]

      Langbein, T.; Sonntag, H.; Trapp, D.; Hoffmann, A.; Malms, W.; Röth, E. P.; Mörs, V.; Zellner, R. Brit. J. Anaesth. 1999, 82(1), 66.  doi: 10.1093/bja/82.1.66

    11. [11]

      Sulbaek Andersen, M. P.; Nielsen, O. J.; Wallington, T. J.; Karpichev, B.; Sander, S. P. Anesth. Analg. 2012, 114, 1081.  doi: 10.1213/ANE.0b013e31824d6150

    12. [12]

      Mishra, B. K.; Lily, M.; Chakrabartty, A. K.; Bhattacharjee, D.; Deka, R. C.; Chandra, A. K. New J. Chem. 2014, 38, 2813.  doi: 10.1039/C3NJ01408H

    13. [13]

      Ma, H.-T.; Bian, W.-S.; Zhang, S.-J.; Meng, L.-P. Acta Chim. Sinica 2005, 63(4), 263(in Chinese).  doi: 10.3321/j.issn:0567-7351.2005.04.002
       

    14. [14]

      Ji, Y.-Q.; Ning, Y.-X.; Ji, W.-X.; Cai, J. Acta Chim. Sinica 2009, 67(19), 2165(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.19.002
       

    15. [15]

      Bai, F.-Y.; Ma, Y.; Lv, S.; Pan, X.-M.; Jia, X.-J. Sci. Rep. 2017, 7, 40264.  doi: 10.1038/srep40264

    16. [16]

      Silva, G. D.; Graham, C.; Wang, Z.-F. Environ. Sci. Technol. 2010, 44, 250.  doi: 10.1021/es900924d

    17. [17]

      Walker, R. W. In Research in Chemical Kinetics, Vol. 3, Eds. : Compton, R. G. ; Hancock, G., Elsevier, Amsterdam, The Netherland, 1995, p. 1.

    18. [18]

      Walker, R. W. ; Morley, C. In Low-Temperature Combustion and Autoignition, Ed. : Pilling, M. J., Elsevier, Amsterdam, The Netherland, 1997, pp. 1~124.

    19. [19]

      Robertson, S. H. ; Seakins, P. W. ; Pilling, M. J. In Low-Temperature Combustion and Autoignition, Ed. : Pilling, M. J., Elsevier, Amsterdam, The Netherland, 1997, p. 125.

    20. [20]

      Pollard, R. T. In Gas Phase Combustion, Eds. : Bamford, C. H. ; Tipper, C. F. H., Elsevier, New York, 1977, p. 249.

    21. [21]

      DeSain, J. D.; Taatjes, C. A.; Miller, J. A.; Klippenstein, S. J.; Hahn, D. K. Faraday Discuss. 2001, 119, 101.  doi: 10.1039/b102237g

    22. [22]

      Eskola, A. J.; Carr, S. A.; Shannon, R. J.; Wang, B.; Blitz, M. A.; Pilling, M. J.; Seakins, P. W. J. Phys. Chem. A 2014, 118, 6773.  doi: 10.1021/jp505422e

    23. [23]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    24. [24]

      Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41(2), 157.  doi: 10.1021/ar700111a

    25. [25]

      Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.  doi: 10.1063/1.456010

    26. [26]

      Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822.  doi: 10.1063/1.477924

    27. [27]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. ; Nakatsuji, H. ; Caricato, M. ; Li, X. ; Hratchian, H. P. ; Izmaylov, A. F. ; Bloino, J. ; Zheng, G. ; Sonnenberg, J. L. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Montgomery Jr., J. A. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Rega, N. ; Millam, J. M. ; Klene, M. ; Knox, J. E. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Zakrzewski, V. G. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Dapprich, S. ; Daniels, A. D. ; Farkas, O. ; Foresman, J. B. ; Ortiz, J. V. ; Cioslowski, J. ; Fox, D. J. Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    7. [7]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    8. [8]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    13. [13]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    16. [16]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    17. [17]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    20. [20]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

Metrics
  • PDF Downloads(4)
  • Abstract views(1460)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return