Citation: Chen Dong, Ji Meishan, Yao Yingming, Zhu Chen. Difunctionalization of Unactivated Alkenes through SCF3 Radical-triggered Distal Functional Group Migration[J]. Acta Chimica Sinica, ;2018, 76(12): 951-955. doi: 10.6023/A18080313 shu

Difunctionalization of Unactivated Alkenes through SCF3 Radical-triggered Distal Functional Group Migration

  • Corresponding author: Yao Yingming, yaoym@suda.edu.cn Zhu Chen, chzhu@suda.edu.cn
  • Received Date: 2 August 2018
    Available Online: 27 December 2018

    Fund Project: the National Natural Science Foundation of China 21722205Project supported by the National Natural Science Foundation of China (No. 21722205)

Figures(6)

  • Radical-mediated C-SCF3 bond formation via the addition of SCF3 radical to alkenes has become an efficient strategy for the construction of alkyl trifluoromethylthioethers. However, the scope of alkenes is largely limited to activated alkenes in which the presence of adjacent carbonyl or aryl group is required to stabilize the alkyl radical intermediates by p-π conjugation. A few cases involving trifluoromethylthiolation of unactivated olefins have been reported, but in these reactions only a single functional group is incorporated to alkenes. The radical difunctionalization of unactivated olefins remains challenging and has received less attention. Recently, we established a new protocol to realize the radical difunctionalization of alkenes through intramolecularly distal functional group migration. This tactic provides a useful and elegant tool for the elusive functionalization of unactivated olefins. A portfolio of groups such as cyano, heteroaryl, imino, aldehyde, and alkynyl can be readily migrated in the transformation. Herein, we disclose an efficient and practical approach for the trifluoromethylthiolation of unactivated olefins based on the intramolecular migration of heteroaryl and imino groups. The migration is triggered by the addition of SCF3 radical, which is generated from the mixture of AgSCF3 and K2S2O8at room temperature, to alkenes. The reaction demonstrates a high functional group compatibility and broad substrate scope. A variety of nitrogen-containing five- and six-membered heteroaryl as well as imino groups are readily migrated, affording the synthetically valuable alkyl trifluoromethylthioether compounds in good yields. The typical procedure is as follows: a mixture of tertiary alcohol (0.2 mmol), AgSCF3(0.3 mmol), and K2S2O8(0.6 mmol) is loaded in a flame-dried reaction vial which is subjected to evacuation/flushing with nitrogen three times. Dry DMF (2.0 mL) is added to the mixture via syringe, and the mixture is then stirred at room temperature until the starting material is consumed which is determined by TLC. The mixture is extracted with ethyl acetate (10 mL×3). The combined organic extracts are washed with brine, dried over Na2SO4, filtered, concentrated, and purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the desired product.
  • 加载中
    1. [1]

      (a) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525; (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.

    2. [2]

      (a) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827; (b) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.

    3. [3]

      (a) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880; (b) Landelle, G.; Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Beilstein J. Org. Chem. 2013, 9, 2476; (c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214; (d) Tlili, A.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 6818; (e) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2415; (f) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731; (g) He, W.; Weng, Z. Prog. Chem. 2013, 25, 1071(in Chinese). (何伟明, 翁志强, 化学进展, 2013, 25, 1071); (h) Xu, J.; Chen, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294(in Chinese). (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294); (i) Zhang, K.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2015, 35, 556(in Chinese). (张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556); (j) Zhang, P.; Lv, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744(in Chinese). (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744); (k) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese). (惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2017, 37, 3060); (l) Zhao, X.; Li, T.; Tian, M.; Su, Z.; Wei, A.; Lu, K. Chin. J. Org. Chem. 2018, 38, 677(in Chinese). (赵霞, 李天娇, 田苗苗, 苏志扬, 魏奥琪, 芦逵, 有机化学, 2018, 38, 677).

    4. [4]

      (a) Ferry, A.; Billard, T.; Langlois, B. R.; Bacqué, E. Angew. Chem., Int. Ed. 2009, 48, 8551; (b) Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.

    5. [5]

      Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.  doi: 10.1021/ol403739w

    6. [6]

      Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.  doi: 10.1021/ja5115858

    7. [7]

      Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem. Eur. J. 2016, 22, 4395.  doi: 10.1002/chem.201600190

    8. [8]

      Zhang, K.; Liu, J.-B.; Qing, F.-L. Chem. Commun. 2014, 50, 14157.  doi: 10.1039/C4CC07062C

    9. [9]

      Yang, T.; Lu, L.; Shen, Q. Chem. Commun. 2015, 51, 5479.  doi: 10.1039/C4CC08655D

    10. [10]

      (a) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087; (b) Eckenhoff, W. T.; Pintauer, T. Catal. Rev. 2010, 52, 1; (c) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732; (d) Clark, A. J. Eur. J. Org. Chem. 2016, 2231; (e) Kindt, S.; Heinrich, M. R. Synthesis 2016, 48, 1597.

    11. [11]

      (a) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 10821; (b) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959; (c) Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Adv. Synth. Catal. 2017, 359, 3052; (d) Ji, M.; Yu, J.; Zhu, C. Chem. Commun. 2018, 54, 6812.

    12. [12]

      (a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388; (b) Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640; (c) Wang, M.; Wu, Z.; Zhang, B.; Zhu, C. Org. Chem. Front. 2018, 5, 1896; (d) Chen, D.; Wu, Z.; Yao, Y.; Zhu, C. Org. Chem. Front. 2018, 5, 2370; (e) Zhang, H.; Wu, X.; Zhao, Q.; Zhu, C. Chem. Asian J. 2018, DOI: 10.1002/asia.201800150.

    13. [13]

      Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360, 744.  doi: 10.1002/adsc.v360.4

    14. [14]

      Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., Int. Ed. 2017, 56, 4545.  doi: 10.1002/anie.201700413

    15. [15]

      For selected reviews, see: (a) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328; (b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.

    16. [16]

      (a) Thaharn, W.; Soorukram, D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M. Angew. Chem., Int. Ed. 2014, 53, 2212; (b) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480; (c) Kong, W.; Merino; E; . Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078; (d) Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964; (e) Kong, W.; Fuentes, N.; Garcia-Dominguez, A.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2015, 54, 2487; (f) Zhou, T.; Luo, F.-X.; Yang, M.; Shi, Z.-J. J. Am. Chem. Soc. 2015, 137, 14586; (g) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y. Angew. Chem., Int. Ed. 2016, 55, 15100; (h) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852; (i) Li, L.; Gu, Q.-S.; Wang, N.; Song, P.; Li, Z.-L.; Li, X.-H.; Wang, F.-L.; Liu, X.-Y. Chem. Commun. 2017, 53, 4038; (j) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026; (k) Gu, L.; Gao, Y.; Ai, X.; He, C. Y.; Li, G.; Yuan, M. Chem. Commun. 2017, 53, 12946; (l) Tang, X.; Studer, A. Chem. Sci. 2017, 8, 6888; (m) Tang, X.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 814; (n) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487; (o) Liu, J.; Li, W.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 797; (p) Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B. Org. Lett. 2018, 20, 3596; (q) Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224; (r) Wei, X.-J.; Noël, T. J. Org. Chem. 2018, DOI: 10.1021/acs.joc.8b01624.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(10)
  • Abstract views(1311)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return