Citation: Li Yue, Jiang Yuchen, Jiang Pingping, Du Shengyu, Jiang Jiusheng, Leng Yan. Molybdenum Nanocarbides Encapsulated in Porous Carbon Spheres for Solvent-free Benzyl Amine Oxidative Coupling Reactions[J]. Acta Chimica Sinica, ;2019, 77(1): 66-71. doi: 10.6023/A18070301 shu

Molybdenum Nanocarbides Encapsulated in Porous Carbon Spheres for Solvent-free Benzyl Amine Oxidative Coupling Reactions

  • Corresponding author: Leng Yan, yanleng@jiangnan.edu.cn
  • Received Date: 27 July 2018
    Available Online: 24 January 2018

    Fund Project: Project supported by Fundamental Research Funds for the Central Universities (JUSRP51623A) and the Programme of Introducing Talents of Discipline to Universities for the 111 Project (B13025)Fundamental Research Funds for the Central Universities JUSRP51623Athe Programme of Introducing Talents of Discipline to Universities for the 111 Project B13025

Figures(8)

  • Imines and their derivatives are versatile chemical intermediates for the synthesis of pharmaceuticals, polymer materials, biologicals and so on. The oxidative coupling of amines was demonstrated to be a promising one pot synthetic procedure for imines, and considerable efforts have been devoted to it. A new type of catalyst based on Mo2C was successfully prepared by roasting the mixture synthesized by using the interaction between ionic bonds with dopamine (DA) and phosphomolybdate (PMo). In a typical procedure, solid product was pyrolyzed in a tube furnace at 800℃ for 3 h in N2 with heating rate of 5℃/min, and the sample PDA-PMo-800 was achieved. The catalyst was characterized and analyzed by Fourier transform infrared (FT-IR), N2 adsorption desorption (BET), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and Raman spectrometer (Raman), thermo gravimetric analyzer (TG), energy dispersive spectrometer (EDS). It was found that the catalyst had morphologies of flower shaped spheres and certain specific surface area (102 m2·g-1). As a catalyst, it can be used in the oxidation coupling reaction of benzyl amine to synthesize the imine under the condition of no solvent and oxygen as oxidant. Typically, amine (5 mmol) and catalyst (0.03 g) was added into a 25 mL sealed round-bottomed flask and kept vigorously stirring at 100℃ under O2 balloon for 10 h. After completion, the catalyst was separated by centrifugation with N, N-dimethylformamide, washed with ethanol, dried in a vacuum, and reused for the next time. The filtrate was identified by GC-MS, and the conversion and yield were analyzed by GC (SP-6890A) equipped with a FID detector. The results showed that a high conversion rate and selection rate can be achieved. And the catalyst can be used repeatedly and maintained a high conversion rate under the same conditions. The successful design of this catalyst not only combines metal materials with organic materials, but also makes a preparation for transition metals to replace noble metals. In addition, carbonized metal was used as a catalyst for coupling reaction, which provided a new idea for the application of carbonized metals to organic reactions.
  • 加载中
    1. [1]

      Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.  doi: 10.1021/cr100204f

    2. [2]

      Westheimer, F.; Taguchi, K. J. Org. Chem. 1971, 36, 1570.  doi: 10.1021/jo00810a033

    3. [3]

      Naeimi, H.; Salimi, F.; Rabiei, K. J. Mol. Catal. A: Chem. 2006, 260, 100.  doi: 10.1016/j.molcata.2006.06.055

    4. [4]

      Hu, X. X.; Liu, J. B.; Wang, L. L.; Huang, F.; Sun, C. Z.; Chen, D. Z. Org. Chem. Front. 2018, 5, 1670.  doi: 10.1039/C8QO00094H

    5. [5]

      Hu, S. B.; Chen, M. W.; Zhai, X. Y.; Zhou, Y. G. Acta Chim. Sinica 2018, 76, 103 (in Chinese).
       

    6. [6]

      Ma, H. F.; Huang, H.; Su, J. L.; Niu, C. S.; Wu, Z. G.; Bo, H. Z.; Li, Y. F. Chinese J. Org. Chem. 2016, 36, 1335 (in Chinese).

    7. [7]

      Ahmad, S.; Gopalaiah, K.; Chandrudu, S. N.; Nagarajan, R. Inorg. Chem. 2014, 53, 2030.  doi: 10.1021/ic403166q

    8. [8]

      Tang, L.; Sun, H.; Li, Y.; Zha, Z.; Wang, Z. Green Chem. 2012, 14, 3423.  doi: 10.1039/c2gc36312g

    9. [9]

      Chen, B.; Wang, L.; Dai, W.; Shang, S.; Lv, Y.; Gao, S. ACS Catal. 2015, 5, 2788.  doi: 10.1021/acscatal.5b00244

    10. [10]

      Zhang, C.; Zhao, P.; Zhang, Z.; Zhang, J.; Yang, P.; Gao, P.; Liu, D. RSC Adv. 2017, 7, 47366.  doi: 10.1039/C7RA09516C

    11. [11]

      Bu, J.; Fang, J.; Leow, W. R.; Zheng, K. H.; Chen, X. D. RSC Adv. 2015, 5, 103895.  doi: 10.1039/C5RA23428J

    12. [12]

      Dai, J.; Yang, J.; Wang, X. H.; Zhang, L.; Li, Y. Appl. Surf. Sci. 2015, 349, 343.  doi: 10.1016/j.apsusc.2015.04.232

    13. [13]

      Wang, J. Q.; Lu, S. L.; Cao, X. Q.; Gu, H. W. Chem. Commun. 2014, 50, 5637.  doi: 10.1039/c4cc01389a

    14. [14]

      Huang, H.; Ji, X.; Wu, W.; Huang, L.; Jiang, H. J. Org. Chem. 2013, 78, 3774.  doi: 10.1021/jo400261v

    15. [15]

      Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.  doi: 10.1021/cr100204f

    16. [16]

      Zhu, B.; Lazar, M.; Trewyn, B. G.; Angelici, R. J. J. Catal. 2008, 260, 1.  doi: 10.1016/j.jcat.2008.08.012

    17. [17]

      Yuan, H.; Yoo, W. J.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2012, 134, 13970.  doi: 10.1021/ja306934b

    18. [18]

      Yuan, H.; Yoo, W. J.; Miyamura, H.; Kobayashi, S. Adv. Synth. Catal. 2012, 354, 2899.  doi: 10.1002/adsc.v354.16

    19. [19]

      Liu, D.; Zhang, C. H.; Han, N.; Du, M. M.; Zhang, X. L.; Zhao, P. S.; Yang, P. Chinese J. Org. Chem. 2018, 38, 1350 (in Chinese).
       

    20. [20]

      Sudarsanam, P.; Selvakannan, P. R.; Soni, S. K.; Bhargava, S. K.; Reddy, B. M. RSC Adv. 2014, 4, 43460.  doi: 10.1039/C4RA07450E

    21. [21]

      Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004, 126, 5192.  doi: 10.1021/ja0400382

    22. [22]

      Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew. Chem. Int. Ed. 2003, 42, 4077.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2011, 1, 1150.  doi: 10.1021/cs200318n

    24. [24]

      Hammond, C.; Schmperli, M. T.; Hermans, I. Chem. Eur. J. 2013, 19, 13193.  doi: 10.1002/chem.v19.39

    25. [25]

      Sudarsanam, P.; Hillary, B.; Amin, M. H.; Hamid, S. B. A.; Bhargava, S. K. Appl. Catal. B: Environ. 2016, 185, 213.  doi: 10.1016/j.apcatb.2015.12.026

    26. [26]

      Ye, J.; Ni, K.; Liu, J.; Chen, G.; Ikram, M.; Zhu, Y. ChemCatChem 2018, 10, 259.  doi: 10.1002/cctc.v10.1

    27. [27]

      Qiu, X.; Len, C.; Luque, R.; Li, Y. ChemSusChem 2014, 7, 1684.  doi: 10.1002/cssc.201301340

    28. [28]

      (a) Paraknowitsch, J. P.; Thomas, A. Energ. Environ. Sci. 2013, 6, 2839; (b) Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Science 2013, 342, 1073; (c) Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J. R.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2013, 135, 10776; (d) Banerjee, D.; Jagadeesh, R. V.; Junge, K.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 4359.

    29. [29]

      Yang, Y. N.; Zhang, Q.; Shi, J.; Fu, Y. Acta Chim. Sinica 2016, 74, 422 (in Chinese).
       

    30. [30]

      Zhao, S. L.; Yin, H. J.; Du, L. He, L.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. ACS Nano 2014, 8, 12660.  doi: 10.1021/nn505582e

    31. [31]

      Gao, Q.; Giordano, C.; Antonietti, M. Angew. Chem. Int. Ed. 2012, 51, 11740.  doi: 10.1002/anie.201206542

    32. [32]

      Ahmad, S.; Gopalaiah, K.; Chandrudu, S. N.; Nagarajan, R. Inorg. Chem. 2014, 53, 2030.  doi: 10.1021/ic403166q

    33. [33]

      Chen, W. F.; Muckerman, J. T.; Fujita, E. Chem. Commun. 2013, 49, 8896.  doi: 10.1039/c3cc44076a

    34. [34]

      Kumar, R.; Rai, R.; Gautam, S.; De Sarkar, A.; Tiwari, N.; Jha, S. N.; Bagchi, V. J. Mater. Chem. A 2017, 5, 7764.  doi: 10.1039/C7TA01815K

    35. [35]

      Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Hu, Z. ACS Catal. 2015, 5, 1857.  doi: 10.1021/cs502029h

    36. [36]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. Chim. Sin. 2017, 33, 130.
       

    37. [37]

      Fu, X.; Su, H.; Yin, W.; Huang, Y.; Gu, X. Catal. Sci. Technol. 2017, 7, 1671.  doi: 10.1039/C6CY02428A

    38. [38]

      Zhu, Y.; Chen, G.; Xu, X.; Yang, G.; Liu, M.; Shao, Z. ACS Catal. 2017, 7, 3540.  doi: 10.1021/acscatal.7b00120

    39. [39]

      Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J.; Adzic, R. R. Angew. Chem. Int. Ed. 2012, 51, 6131.  doi: 10.1002/anie.201200699

    40. [40]

      Cotta, R. F.; da Silva Rocha, K. A.; Ko-zhevnikova, E. F.; Kozhevnikov, I. V.; Gusevskaya, E. V. Appl. Catal. B: Environ. 2017, 217, 92.  doi: 10.1016/j.apcatb.2017.05.055

    41. [41]

      Li, Z. W.; Zhong, J. L.; Chen, N. N.; Xue, B.; Mi, H. Y. Acta Chim. Sinica 2018, 76, 209 (in Chinese).
       

    42. [42]

      Chen, B.; Wang, Y.; Yu, F.; Zhu, Y.; Zhang, L.; Wu, Y. Chinese J. Chem. 2017, 35, 55.  doi: 10.1002/cjoc.v35.1

    43. [43]

      Yan, G.; Wu, C.; Tan, H.; Feng, X.; Yan, L.; Zang, H.; Li, Y. J. Mater. Chem. A 2017, 5, 765.  doi: 10.1039/C6TA09052D

    44. [44]

      Leng, Y.; Li, J.; Zhang, C.; Jiang, P.; Li, Y.; Jiang, Y.; Du, S. J. Mater. Chem. A 2017, 5, 17580.  doi: 10.1039/C7TA04763K

    45. [45]

      Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057.  doi: 10.1021/cr400407a

    46. [46]

      Zhang, L.; Wu, J.; Wang, Y.; Long, Y.; Zhao, N.; Xu, J. J. Am. Chem. Soc. 2012, 24, 9879.
       

    47. [47]

      Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Park, T. G. Adv. Mater. 2008, 21, 4154.
       

    48. [48]

      Cao, Y.; Zhang, X.; Tao, L.; Li, K.; Xue, Z.; Feng, L.; Wei, Y. ACS Appl. Mater. Inter. 2013, 10, 4438.
       

    49. [49]

      Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J. ACS Nano 2013, 10, 9384.
       

    50. [50]

      Cheng, C.; Nie, S.; Li, S.; Peng, H.; Yang, H.; Ma, L.; Sun, S. D.; Zhao, C. S. J. Mater. Chem. B 2013, 3, 265.
       

    51. [51]

      Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. Adv. Mater. 2013, 25, 998.  doi: 10.1002/adma.v25.7

    52. [52]

      Bardin, B. B.; Davis, R. J. Appl. Catal. A: Gen. 1999, 2, 283.
       

    53. [53]

      Anjum, M. A. R.; Lee, M. H.; Lee, J. S. J. Mater. Chem. A 2017, 25, 13122.
       

    54. [54]

      Seh, Z. W. K.; Fredrickson, D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. ACS Energy Lett. 2016, 1, 589.  doi: 10.1021/acsenergylett.6b00247

    55. [55]

      Xiao, P.; Yan, Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Wang, X. Appl. Catal. B: Environ. 2014, 154, 232.
       

    56. [56]

      Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. Energy Environ. Sci. 2014, 7, 387.  doi: 10.1039/C3EE42441C

    57. [57]

      Gao, Q.; Zhang, C.; Xie, S.; Hua, W.; Zhang, Y.; Ren, N.; Xu, H.; Tang, Y. Chem. Mater. 2009, 21, 5560.  doi: 10.1021/cm9014578

    58. [58]

      Pan, L. F.; Li, Y. H.; Yang, S.; Liu, P. F.; Yu, M. Q.; Yang, H. G. Chem. Commun. 2014, 50, 13135.  doi: 10.1039/C4CC05698A

    59. [59]

      Li, Z.; Chen, C.; Zhan, E.; Li, Y.; Shen, W. Chem. Commun. 2014, 50, 4469.  doi: 10.1039/c4cc00242c

    60. [60]

      Du, J.; Wu, J.; Guo, T.; Zhao, R.; Li, J. RSC Adv. 2014, 4, 53950.  doi: 10.1039/C4RA08238A

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(19)
  • Abstract views(1377)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return