Citation: Li Yue, Jiang Yuchen, Jiang Pingping, Du Shengyu, Jiang Jiusheng, Leng Yan. Molybdenum Nanocarbides Encapsulated in Porous Carbon Spheres for Solvent-free Benzyl Amine Oxidative Coupling Reactions[J]. Acta Chimica Sinica, ;2019, 77(1): 66-71. doi: 10.6023/A18070301 shu

Molybdenum Nanocarbides Encapsulated in Porous Carbon Spheres for Solvent-free Benzyl Amine Oxidative Coupling Reactions

  • Corresponding author: Leng Yan, yanleng@jiangnan.edu.cn
  • Received Date: 27 July 2018
    Available Online: 24 January 2018

    Fund Project: Project supported by Fundamental Research Funds for the Central Universities (JUSRP51623A) and the Programme of Introducing Talents of Discipline to Universities for the 111 Project (B13025)Fundamental Research Funds for the Central Universities JUSRP51623Athe Programme of Introducing Talents of Discipline to Universities for the 111 Project B13025

Figures(8)

  • Imines and their derivatives are versatile chemical intermediates for the synthesis of pharmaceuticals, polymer materials, biologicals and so on. The oxidative coupling of amines was demonstrated to be a promising one pot synthetic procedure for imines, and considerable efforts have been devoted to it. A new type of catalyst based on Mo2C was successfully prepared by roasting the mixture synthesized by using the interaction between ionic bonds with dopamine (DA) and phosphomolybdate (PMo). In a typical procedure, solid product was pyrolyzed in a tube furnace at 800℃ for 3 h in N2 with heating rate of 5℃/min, and the sample PDA-PMo-800 was achieved. The catalyst was characterized and analyzed by Fourier transform infrared (FT-IR), N2 adsorption desorption (BET), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and Raman spectrometer (Raman), thermo gravimetric analyzer (TG), energy dispersive spectrometer (EDS). It was found that the catalyst had morphologies of flower shaped spheres and certain specific surface area (102 m2·g-1). As a catalyst, it can be used in the oxidation coupling reaction of benzyl amine to synthesize the imine under the condition of no solvent and oxygen as oxidant. Typically, amine (5 mmol) and catalyst (0.03 g) was added into a 25 mL sealed round-bottomed flask and kept vigorously stirring at 100℃ under O2 balloon for 10 h. After completion, the catalyst was separated by centrifugation with N, N-dimethylformamide, washed with ethanol, dried in a vacuum, and reused for the next time. The filtrate was identified by GC-MS, and the conversion and yield were analyzed by GC (SP-6890A) equipped with a FID detector. The results showed that a high conversion rate and selection rate can be achieved. And the catalyst can be used repeatedly and maintained a high conversion rate under the same conditions. The successful design of this catalyst not only combines metal materials with organic materials, but also makes a preparation for transition metals to replace noble metals. In addition, carbonized metal was used as a catalyst for coupling reaction, which provided a new idea for the application of carbonized metals to organic reactions.
  • 加载中
    1. [1]

      Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.  doi: 10.1021/cr100204f

    2. [2]

      Westheimer, F.; Taguchi, K. J. Org. Chem. 1971, 36, 1570.  doi: 10.1021/jo00810a033

    3. [3]

      Naeimi, H.; Salimi, F.; Rabiei, K. J. Mol. Catal. A: Chem. 2006, 260, 100.  doi: 10.1016/j.molcata.2006.06.055

    4. [4]

      Hu, X. X.; Liu, J. B.; Wang, L. L.; Huang, F.; Sun, C. Z.; Chen, D. Z. Org. Chem. Front. 2018, 5, 1670.  doi: 10.1039/C8QO00094H

    5. [5]

      Hu, S. B.; Chen, M. W.; Zhai, X. Y.; Zhou, Y. G. Acta Chim. Sinica 2018, 76, 103 (in Chinese).
       

    6. [6]

      Ma, H. F.; Huang, H.; Su, J. L.; Niu, C. S.; Wu, Z. G.; Bo, H. Z.; Li, Y. F. Chinese J. Org. Chem. 2016, 36, 1335 (in Chinese).

    7. [7]

      Ahmad, S.; Gopalaiah, K.; Chandrudu, S. N.; Nagarajan, R. Inorg. Chem. 2014, 53, 2030.  doi: 10.1021/ic403166q

    8. [8]

      Tang, L.; Sun, H.; Li, Y.; Zha, Z.; Wang, Z. Green Chem. 2012, 14, 3423.  doi: 10.1039/c2gc36312g

    9. [9]

      Chen, B.; Wang, L.; Dai, W.; Shang, S.; Lv, Y.; Gao, S. ACS Catal. 2015, 5, 2788.  doi: 10.1021/acscatal.5b00244

    10. [10]

      Zhang, C.; Zhao, P.; Zhang, Z.; Zhang, J.; Yang, P.; Gao, P.; Liu, D. RSC Adv. 2017, 7, 47366.  doi: 10.1039/C7RA09516C

    11. [11]

      Bu, J.; Fang, J.; Leow, W. R.; Zheng, K. H.; Chen, X. D. RSC Adv. 2015, 5, 103895.  doi: 10.1039/C5RA23428J

    12. [12]

      Dai, J.; Yang, J.; Wang, X. H.; Zhang, L.; Li, Y. Appl. Surf. Sci. 2015, 349, 343.  doi: 10.1016/j.apsusc.2015.04.232

    13. [13]

      Wang, J. Q.; Lu, S. L.; Cao, X. Q.; Gu, H. W. Chem. Commun. 2014, 50, 5637.  doi: 10.1039/c4cc01389a

    14. [14]

      Huang, H.; Ji, X.; Wu, W.; Huang, L.; Jiang, H. J. Org. Chem. 2013, 78, 3774.  doi: 10.1021/jo400261v

    15. [15]

      Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.  doi: 10.1021/cr100204f

    16. [16]

      Zhu, B.; Lazar, M.; Trewyn, B. G.; Angelici, R. J. J. Catal. 2008, 260, 1.  doi: 10.1016/j.jcat.2008.08.012

    17. [17]

      Yuan, H.; Yoo, W. J.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2012, 134, 13970.  doi: 10.1021/ja306934b

    18. [18]

      Yuan, H.; Yoo, W. J.; Miyamura, H.; Kobayashi, S. Adv. Synth. Catal. 2012, 354, 2899.  doi: 10.1002/adsc.v354.16

    19. [19]

      Liu, D.; Zhang, C. H.; Han, N.; Du, M. M.; Zhang, X. L.; Zhao, P. S.; Yang, P. Chinese J. Org. Chem. 2018, 38, 1350 (in Chinese).
       

    20. [20]

      Sudarsanam, P.; Selvakannan, P. R.; Soni, S. K.; Bhargava, S. K.; Reddy, B. M. RSC Adv. 2014, 4, 43460.  doi: 10.1039/C4RA07450E

    21. [21]

      Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004, 126, 5192.  doi: 10.1021/ja0400382

    22. [22]

      Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew. Chem. Int. Ed. 2003, 42, 4077.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2011, 1, 1150.  doi: 10.1021/cs200318n

    24. [24]

      Hammond, C.; Schmperli, M. T.; Hermans, I. Chem. Eur. J. 2013, 19, 13193.  doi: 10.1002/chem.v19.39

    25. [25]

      Sudarsanam, P.; Hillary, B.; Amin, M. H.; Hamid, S. B. A.; Bhargava, S. K. Appl. Catal. B: Environ. 2016, 185, 213.  doi: 10.1016/j.apcatb.2015.12.026

    26. [26]

      Ye, J.; Ni, K.; Liu, J.; Chen, G.; Ikram, M.; Zhu, Y. ChemCatChem 2018, 10, 259.  doi: 10.1002/cctc.v10.1

    27. [27]

      Qiu, X.; Len, C.; Luque, R.; Li, Y. ChemSusChem 2014, 7, 1684.  doi: 10.1002/cssc.201301340

    28. [28]

      (a) Paraknowitsch, J. P.; Thomas, A. Energ. Environ. Sci. 2013, 6, 2839; (b) Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Science 2013, 342, 1073; (c) Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J. R.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2013, 135, 10776; (d) Banerjee, D.; Jagadeesh, R. V.; Junge, K.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 4359.

    29. [29]

      Yang, Y. N.; Zhang, Q.; Shi, J.; Fu, Y. Acta Chim. Sinica 2016, 74, 422 (in Chinese).
       

    30. [30]

      Zhao, S. L.; Yin, H. J.; Du, L. He, L.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. ACS Nano 2014, 8, 12660.  doi: 10.1021/nn505582e

    31. [31]

      Gao, Q.; Giordano, C.; Antonietti, M. Angew. Chem. Int. Ed. 2012, 51, 11740.  doi: 10.1002/anie.201206542

    32. [32]

      Ahmad, S.; Gopalaiah, K.; Chandrudu, S. N.; Nagarajan, R. Inorg. Chem. 2014, 53, 2030.  doi: 10.1021/ic403166q

    33. [33]

      Chen, W. F.; Muckerman, J. T.; Fujita, E. Chem. Commun. 2013, 49, 8896.  doi: 10.1039/c3cc44076a

    34. [34]

      Kumar, R.; Rai, R.; Gautam, S.; De Sarkar, A.; Tiwari, N.; Jha, S. N.; Bagchi, V. J. Mater. Chem. A 2017, 5, 7764.  doi: 10.1039/C7TA01815K

    35. [35]

      Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Hu, Z. ACS Catal. 2015, 5, 1857.  doi: 10.1021/cs502029h

    36. [36]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. Chim. Sin. 2017, 33, 130.
       

    37. [37]

      Fu, X.; Su, H.; Yin, W.; Huang, Y.; Gu, X. Catal. Sci. Technol. 2017, 7, 1671.  doi: 10.1039/C6CY02428A

    38. [38]

      Zhu, Y.; Chen, G.; Xu, X.; Yang, G.; Liu, M.; Shao, Z. ACS Catal. 2017, 7, 3540.  doi: 10.1021/acscatal.7b00120

    39. [39]

      Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J.; Adzic, R. R. Angew. Chem. Int. Ed. 2012, 51, 6131.  doi: 10.1002/anie.201200699

    40. [40]

      Cotta, R. F.; da Silva Rocha, K. A.; Ko-zhevnikova, E. F.; Kozhevnikov, I. V.; Gusevskaya, E. V. Appl. Catal. B: Environ. 2017, 217, 92.  doi: 10.1016/j.apcatb.2017.05.055

    41. [41]

      Li, Z. W.; Zhong, J. L.; Chen, N. N.; Xue, B.; Mi, H. Y. Acta Chim. Sinica 2018, 76, 209 (in Chinese).
       

    42. [42]

      Chen, B.; Wang, Y.; Yu, F.; Zhu, Y.; Zhang, L.; Wu, Y. Chinese J. Chem. 2017, 35, 55.  doi: 10.1002/cjoc.v35.1

    43. [43]

      Yan, G.; Wu, C.; Tan, H.; Feng, X.; Yan, L.; Zang, H.; Li, Y. J. Mater. Chem. A 2017, 5, 765.  doi: 10.1039/C6TA09052D

    44. [44]

      Leng, Y.; Li, J.; Zhang, C.; Jiang, P.; Li, Y.; Jiang, Y.; Du, S. J. Mater. Chem. A 2017, 5, 17580.  doi: 10.1039/C7TA04763K

    45. [45]

      Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057.  doi: 10.1021/cr400407a

    46. [46]

      Zhang, L.; Wu, J.; Wang, Y.; Long, Y.; Zhao, N.; Xu, J. J. Am. Chem. Soc. 2012, 24, 9879.
       

    47. [47]

      Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Park, T. G. Adv. Mater. 2008, 21, 4154.
       

    48. [48]

      Cao, Y.; Zhang, X.; Tao, L.; Li, K.; Xue, Z.; Feng, L.; Wei, Y. ACS Appl. Mater. Inter. 2013, 10, 4438.
       

    49. [49]

      Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J. ACS Nano 2013, 10, 9384.
       

    50. [50]

      Cheng, C.; Nie, S.; Li, S.; Peng, H.; Yang, H.; Ma, L.; Sun, S. D.; Zhao, C. S. J. Mater. Chem. B 2013, 3, 265.
       

    51. [51]

      Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. Adv. Mater. 2013, 25, 998.  doi: 10.1002/adma.v25.7

    52. [52]

      Bardin, B. B.; Davis, R. J. Appl. Catal. A: Gen. 1999, 2, 283.
       

    53. [53]

      Anjum, M. A. R.; Lee, M. H.; Lee, J. S. J. Mater. Chem. A 2017, 25, 13122.
       

    54. [54]

      Seh, Z. W. K.; Fredrickson, D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. ACS Energy Lett. 2016, 1, 589.  doi: 10.1021/acsenergylett.6b00247

    55. [55]

      Xiao, P.; Yan, Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Wang, X. Appl. Catal. B: Environ. 2014, 154, 232.
       

    56. [56]

      Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. Energy Environ. Sci. 2014, 7, 387.  doi: 10.1039/C3EE42441C

    57. [57]

      Gao, Q.; Zhang, C.; Xie, S.; Hua, W.; Zhang, Y.; Ren, N.; Xu, H.; Tang, Y. Chem. Mater. 2009, 21, 5560.  doi: 10.1021/cm9014578

    58. [58]

      Pan, L. F.; Li, Y. H.; Yang, S.; Liu, P. F.; Yu, M. Q.; Yang, H. G. Chem. Commun. 2014, 50, 13135.  doi: 10.1039/C4CC05698A

    59. [59]

      Li, Z.; Chen, C.; Zhan, E.; Li, Y.; Shen, W. Chem. Commun. 2014, 50, 4469.  doi: 10.1039/c4cc00242c

    60. [60]

      Du, J.; Wu, J.; Guo, T.; Zhao, R.; Li, J. RSC Adv. 2014, 4, 53950.  doi: 10.1039/C4RA08238A

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    11. [11]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(20)
  • Abstract views(1432)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return