High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas
- Corresponding author: Qiao Zhiwei, zqiao@gzhu.edu.cn
Citation: Yang Wenyuan, Liang Hong, Qiao Zhiwei. High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas[J]. Acta Chimica Sinica, ;2018, 76(10): 785-792. doi: 10.6023/A18070293
Shahbaz, M.; Lean, H. H.; Farooq, A. Renew. Sust. Energy. Rev. 2013, 18, 87.
doi: 10.1016/j.rser.2012.09.029
Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; Zwaan, D. V. B. Int. J. Greenhouse Gas Control 2011, 5, 1614.
doi: 10.1016/j.ijggc.2011.09.008
Wu, J. R.; Mao, H. Y. Nat. Gas. Ind. 2011, 31, 99.
Yang, T. T.; Xiong, Y. T.; Cui, R. H.; Xiao, J.; Han, S. Y. Nat. Gas & Oil 2013, 31, 40.
doi: 10.3969/j.issn.1006-5539.2013.02.011
Fan, H.; Chen, L. J.; Zhao, H.; Zeng, J.; Sun, W. C.; Hu, K. N. Nat. Gas. Ind. 2011, 36, 34.
Wang, J.; Zhang, X. P.; Li, E. T.; Ma, L.; Wang, S. L. J. Changzhou Univ. 2013, 25, 88.
Zhang, X. D.; Li, H. X.; Hou, F. L.; Dong, H.; Zhu, Z.; Cui, L. F. J. Funct. Mater. 2016, 47, 8178.
doi: 10.3969/j.issn.1001-9731.2016.08.031
Palomino, M.; Corma, A.; Rey, F.; Valencia, S. Langmuir 2010, 26, 1910.
doi: 10.1021/la9026656
Shah, M. S.; Tsapatsis, M.; Siepman, J. I. Angew. Chem. 2016, 128, 6042.
doi: 10.1002/ange.201600612
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 44, 974.
Zhang, X. F.; An, X. H.; Liu, D. H.; Yang, Q. Y.; Yang, Z. H.; Zhong, C. L.; Lu, X. H. Acta Chim. Sinica 2011, 69, 84.
Zhou, J. H.; Zhao, H. L.; Hu, J.; Liu, H. L.; Hu, Y. CIESC J. 2014, 65, 1680.
doi: 10.3969/j.issn.0438-1157.2014.05.018
Mu, W.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys.-Chim. Sin. 2010, 26, 1657.
doi: 10.3866/PKU.WHXB20100616
Wu, X. J.; Zhao, P.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.
doi: 10.3866/PKU.WHXB201409222
Zhou, Z. E.; Xue, C. Y.; Yang, Q. Y.; Zhong, C. L. Acta Chim. Sinica 2009, 67, 477.
Qiao, Z. W.; Wang, N. Y.; Jiang, J. W.; Zhou, J. Chem. Commun. 2015, 52, 974.
Wu, P.; He, C.; Wang, J.; Peng, X. J. Am. Chem. Soc. 2012, 134, 14991.
doi: 10.1021/ja305367j
Kong, G. Q.; Ou, S.; Zou, C.; Wu, C. D. J. Am. Chem. Soc. 2012, 134, 19851.
doi: 10.1021/ja309158a
Zhang, Z. M.; Yang, J. F.; Chen, Y.; Wang, Y.; Li, L. B.; Li, J. P. CIESC J. 2015, 66, 3549.
Han, S. Y.; Fan, W. D.; Gao, L.; Cao, Y. X.; Sun, D. F. Chem. Eng. Oil Gas. 2017, 46, 51.
Wang, S.; Wu, D.; Huang, H.; Yang, M.; Tong, M.; Liu, D.; Zhong, C. L. Chin. J. Chem. Eng. 2015, 23, 1291.
doi: 10.1016/j.cjche.2015.04.017
Joshi, J.; Zhu, G.; Lee, J. J.; Carter, E. A.; Jones, C. W. Langmuir 2018, 34, 8443.
doi: 10.1021/acs.langmuir.8b00889
Belmabkhout, Y.; Pillai, R. S.; Alezi, D.; Shekhah, O.; Bhatt, P. M.; Chen, Z.; Adil, K.; Vaesen, S.; Weireld, G. D.; Pang, M.; Suetin, M.; Cairns, A. J.; Solovyeva, V.; Shkurenko, A.; Tall, O. E.; Maurin, G.; Eddaoudi, M. J. Mater. Chem. A 2017, 5, 3293.
doi: 10.1039/C6TA09406F
Bhatt, P. M.; Belmabkhout, Y.; Assen, A. H.; Weselinski, L. J.; Jiang, h.; Cadiau, A.; Xue, D. X.; Eddaoudi, M. Chem. Eng. J. 2017, 324, 392.
doi: 10.1016/j.cej.2017.05.008
Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.
doi: 10.1021/cr200190s
Wu, D.; Wang, C. C.; Liu, B.; Liu, D.; Yang, Q. Y.; Zhong, C. L. AIChE J. 2012, 58, 2078.
doi: 10.1002/aic.v58.7
Liu, B.; Smit, B. J. Phys. Chem. C 2016, 114, 8515.
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.
doi: 10.3866/PKU.WHXB201708302
Actintas, C.; Avci, G.; Daglar, H.; Gulcay, E.; Erucar, L.; Keskin, S. J. Mater. Chem. A 2018, 6, 5836.
doi: 10.1039/C8TA01547C
Xu, H.; Tong, M. M.; Wu, D.; Xiao, G.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. Acta Phys.-Chim. Sin. 2015, 31, 41.
doi: 10.3866/PKU.WHXB201411132
Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849.
doi: 10.1039/c2ee23201d
James, L. Technometrics 1983, 26, 415.
Qiao, Z. W.; Peng, C. W.; Zhou, J.; Jiang, J. W. J. Mater. Chem. A 2016, 4, 15904.
doi: 10.1039/C6TA06262H
Qiao, Z. W.; Xu, Q.; Jiang, J. W. J. Membr. Sci. 2018, 551, 47.
doi: 10.1016/j.memsci.2018.01.020
Glover, T. G.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghil, O. Chem. Eng. Sci. 2011, 66, 163.
doi: 10.1016/j.ces.2010.10.002
Herm, Z. R.; Snisher, J. A.; Smit, B.; Krishna, R.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 5664.
doi: 10.1021/ja111411q
Chung, Y. G.; Camp, J.; Haranczy, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yidirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.
doi: 10.1021/cm502594j
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020
Dubbeldam, D.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2016, 42, 81.
doi: 10.1080/08927022.2015.1010082
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83.
Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys.-Chim. Sin. 2013, 29, 2207.
doi: 10.3866/PKU.WHXB201307191
Rappe, A. K.; Casewit, C. J.; Colwell, K. S. Ⅲ, W. A. G.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040
Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.
doi: 10.1021/jz401479k
And, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+
Qiao, Z. W.; Xu, Q.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.
doi: 10.1021/acs.jpcc.7b07758
Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. J. Phys. Chem. B 2015, 119, 7041.
doi: 10.1021/acs.jpcb.5b02536
Ewald, P. P. Ann. Phys. 1921, 369, 253.
doi: 10.1002/(ISSN)1521-3889
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
The red dashed lines represent two thresholds for adsorption capacity (NH2S+CO2 > 5.0 mol/kg) and selectivity (SH2S+CO2/C1-C3 > 85). The figure contains the data of 6013 CoRE-MOFs
(a), (d), (g), (j) represent the effects of four descriptors on TSN; (b), (e), (h), (k) represent the effects of the four descriptors on SNM; (c), (f), (i), (l) represent the effects of the four descriptors on TSC. Red lines represent the linear fitting line. The figures contain the data of 4368 CoRE-MOFs with NH2S+CO2 > 1.2 mol/kg