Citation: Khan Ijaz, Li Hongfang, Wu Xue, Zhang Yong Jian. Asymmetric Decarboxylative Cycloaddition of Vinylethylene Carbonates with Aldehydes by Cooperative Catalysis of Palladium Complex and Chiral Squaramide[J]. Acta Chimica Sinica, ;2018, 76(11): 874-877. doi: 10.6023/A18070291 shu

Asymmetric Decarboxylative Cycloaddition of Vinylethylene Carbonates with Aldehydes by Cooperative Catalysis of Palladium Complex and Chiral Squaramide

  • Corresponding author: Zhang Yong Jian, yjian@sjtu.edu.cn
  • Received Date: 20 July 2018
    Available Online: 7 November 2018

    Fund Project: the National Natural Science Foundation of China 21572130Project supported by the National Natural Science Foundation of China (No. 21572130)

Figures(3)

  • Chiral tertiary alcohols are ubiquitous in medicinally relevant agents and biologically active natural products. Although some catalytic asymmetric approaches for the synthesis of chiral tertiary alcohols have been reported, the development of efficient methods for enantioselective construction of tertiary alcohols is still highly appealing. Most recently, we have developed Pd-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates (VECs) with formaldehyde to construct tertiary alcohol derivatives. The reaction was catalyzed by the chiral palladium complex with a chiral phosphoramidite to afford methylene acetal protected tertiary vinylglycols in high efficiency. Since the pioneer works by Gong and Takemoto respectively for the allylic substitution under cooperative catalysis of palladium complex and chiral phase-transfer catalyst, the asymmetric allylic substitution synergistically catalyzed by transition metal and organocatalyst has recently attracted a great deal of attention. However, there have been no reports on the combination of transition-metal and squaramide for the allylic alkylation. In this communication, we will report the asymmetric decarboxylative cycloaddition of VECs with formaldehyde under cooperative catalytic system of achiral palladium complex and chiral squaramide. With combination of palladium complex in situ generated from Pd2(dba)3·CHCl3 (2.5 mol%) and achiral phosphine ligand L4 (10 mol%) and chiral squaramide OC2 (25 mol%) as cooperative catalysts, the reaction of VECs with paraformaldehyde (10 equiv.) proceeded smoothly to give desired tertiary alcohol derivatives in good yields (51%~65%) with moderate enantioselectivities (62%~79% ee). The reaction conditions are also suitable for the reaction of VEC with electronic deficient arylaldehydes to afford desired products in high yields with good enantioselectivities, although the catalytic system is less effective for the control of the diastereoselectivities. Although the enantioselectivity of the reaction is not significantly high, we firstly demonstrated that the chiral induction for the cycloaddition reaction could be achieved under the cooperative catalytic system of achiral palladium complex and chiral squaramide. The detail reaction mechanism and stereochemical outcome are currently underway, and will be reported in due course.
  • 加载中
    1. [1]

      For reviews, see: (a) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. (b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.

    2. [2]

      For reviews, see: (a) Kolb, H. C.; Sharpless, K. B. In Transition Metals for Organic Synthesis, 2nd ed., Eds.: Beller, M.; Bolm, C., WILEY-VCH, Weinheim, 2004, p. 275. (b) Becker, H.; Sharpless, K. B. In Asymmetric Oxidation Reactions, Ed.: Katsuki, T., Oxford University Press, Oxford, 2001, p. 81.

    3. [3]

      For reviews, see: (a) Wong, O. A.; Shi, Y. Chem. Rev. 2008, 108, 3958. (b) Katsuki, T. Adv. Synth. Catal. 2002, 344, 131. (c) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed., Ed.: Ojima, I., WILEY-VCH, New York, 2000, p. 231.

    4. [4]

      For selected recent examples for catalytic asymmetric synthesis of tertiary alcohols, see: (a) Kim, J. H.; Čorić, I.; Palumbo, C.; List, B. J. Am. Chem. Soc. 2015, 137, 1778. (b) Shibatomi, K.; Kotozaki, M.; Sasaki, N.; Fujisawa, I.; Iwasa, S. Chem. - Eur. J. 2015, 21, 14095. (c) Pulis, A. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2012, 123, 7570. (d) Russo, A.; Fusco, C. D.; Lattanzi, A. RSC Adv. 2012, 2, 385. (e) Gourdet, B.; Lam, H. W. Angew. Chem., Int. Ed. 2010, 49, 8733. (f) Schipper, D. J.; Rousseaux, S.; Fagnou, K. Angew. Chem., Int. Ed. 2009, 48, 8343. (g) You, Z.; Hoveyda, A. H.; Snapper, M. L. Angew. Chem., Int. Ed. 2009, 48, 547. (h) Checa, B.; Gálvez, E.; Parelló, R.; Sau, M.; Romea, P.; Urpí, F.; Font-Bardia, M.; Solans, X. Org. Lett. 2009, 11, 2193. (i) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778. (j) Jung, B.; Kang, S. H. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1471. (k) Jung, B.; Hong, M. S.; Kang, S. H. Angew. Chem., Int. Ed. 2007, 46, 2616. (l) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2008, 47, 1741. (m) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366. (n) Teng, X.; Cefalo, D. R.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 10779. (o) Deng, D.; Zhang, Y.; Sun, A.; Sai, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1185. (p) Liu, Y.-L.; Yin, X.-P.; Zhou, J. Chin. J. Chem. 2018, 36, 321.

    5. [5]

      (a) Hartwig, J. F. Allylic Substitution, University Science Books, Sausalito, CA, 2010. (b) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258. (c) Trost, B. M.; Crawley, M. L.; Chem. Rev. 2003, 103, 2921.

    6. [6]

      For Pd-catalyzed asymmetric intramolecular allylic etherification of phenol allylic carbonates for the synthesis of chiral chromans, see: (a) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.; Sylvain, C. J. Am. Chem. Soc. 2004, 126, 11966. (b) Trost, B. M.; Shen, H. C.; Surivet, J.-P. J. Am. Chem. Soc. 2004, 126, 12565. (c) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276. (d) Trost, B. M.; Asakawa, N. Synthesis 1999, 1491. (e) Mizuguchi, E.; Achiwa, K. Chem. Pharm. Bull. 1997, 45, 1209.

    7. [7]

      For Pd-catalyzed asymmetric intermolecular allylic etherification of phenols to 3, 3-disubstituted allylic carbonates, see: (a) Sawayama, A. M.; Tanaka, H.; Wandless, T. J. J. Org. Chem. 2004, 69, 8810. (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074.

    8. [8]

      (a) Trost, B. M.; McEachern, E. J.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 12702. (b) Trost, B. M.; Brown, B. S.; McEachern, E. J.; Kuhn, O. Chem. - Eur. J. 2003, 9, 4442.

    9. [9]

      (a) Khan, I.; Zhao, C.; Zhang, Y. J. Chem. Commun. 2018, 54, 4708. (b) Khan, A.; Khan, S.; Khan, I.; Zhao, C.; Mao, Y.; Chen, Y.; Zhang, Y. J. J. Am. Chem. Soc. 2017, 139, 10733. (c) Yang, L.; Khan, A.; Zheng, R.; Jin, L. Y.; Zhang, Y. J. Org. Lett. 2015, 17, 6230. (d) Khan, A.; Zhang, Y. J. Synlett 2015, 26, 853. (e) Khan, A.; Xing, J.; Zhao, J.; Kan, Y.; Zhang, W.; Zhang, Y. J. Chem. - Eur. J. 2015, 21, 120. (f) Khan, A.; Zheng, R.; Kan, Y.; Ye, J.; Xing, J.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 6439. (g) Khan, A.; Yang, L.; Xu, J.; Jin, L. Y.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 11257.

    10. [10]

    11. [11]

      Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567.  doi: 10.1016/S0957-4166(01)00276-2

    12. [12]

      Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.  doi: 10.1021/ol016567h

    13. [13]

    14. [14]

      (a) Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. Org. Lett. 2010, 12, 2028. (b) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010, 49, 153.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(12)
  • Abstract views(780)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return