Citation: Jiao Yang, Zhang Xi. Supramolecular Free Radicals: Fabrication, Modulation and Functions[J]. Acta Chimica Sinica, ;2018, 76(9): 659-665. doi: 10.6023/A18070273 shu

Supramolecular Free Radicals: Fabrication, Modulation and Functions

  • Corresponding author: Zhang Xi, xi@mail.tsinghua.edu.cn
  • Received Date: 16 July 2018
    Available Online: 21 September 2018

    Fund Project: the National Natural Science Foundation of China 21434004Project supported by the National Natural Science Foundation of China (Nos. 21434004, 91527000)the National Natural Science Foundation of China 91527000

Figures(8)

  • Modulating the activity of radicals is of great importance for the applications in radical-based materials and radical-mediated reactions. To this end, we have proposed a new concept of "supramolecular free radicals", which refers to the free radicals stabilized or activated through supramolecular approaches. Based on the host-guest chemistry of cucurbiturils (CB), we have fabricated three kinds of supramolecular free radicals to modulate the activity and realize diverse functions. Firstly, radical anions can be stabilized by the steric effect and electrostatic effect of CB. As a result, we have constructed a highly efficient near-infrared photothermal conversion system, which displays selective antibacterial performance. Secondly, owing to the electrostatic effect of CB, radical cations can be activated to induce a significant acceleration of Fenton oxidation reaction. Thirdly, by taking advantage of the dynamic nature of host-guest interactions, we can endow the reaction intermediate with adaptive reactivity, which greatly improves the catalytic efficiency of alcohol oxidation. It is highly anticipated that this series of research opens a new horizon in supramolecular materials and supramolecular catalysis.
  • 加载中
    1. [1]

      Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. Nature 2015, 527, 78.  doi: 10.1038/nature15746

    2. [2]

      Ortony, J. H.; Newcomb, C. J.; Matson, J. B.; Palmer, L. C.; Doan, P. E.; Hoffman, B. M.; Stupp, S. I. Nat. Mater. 2014, 13, 812.  doi: 10.1038/nmat3979

    3. [3]

      Peng, Q.; Obolda, A.; Zhang, M.; Li, F. Angew. Chem., Int. Ed. 2015, 54, 7091.  doi: 10.1002/anie.201500242

    4. [4]

      Rajca, A.; Wang, Y.; Boska, M.; Paletta, J. T.; Olankitwanit, A.; Swanson, M. A.; Mitchell, D. G.; Eaton, S. S.; Eaton, G. R.; Rajca, S. J. Am. Chem. Soc. 2012, 134, 15724.  doi: 10.1021/ja3079829

    5. [5]

      Studer, A.; Curran Dennis, P. Angew. Chem. Int. Ed. 2016, 55, 58.  doi: 10.1002/anie.201505090

    6. [6]

      Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22.
       

    7. [7]

      Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.  doi: 10.1021/jacs.6b08856

    8. [8]

      Zetterlund, P. B.; Thickett, S. C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. Chem. Rev. 2015, 115, 9745.  doi: 10.1021/cr500625k

    9. [9]

      Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757.  doi: 10.1021/ja02049a006

    10. [10]

      Lebelev, O. L.; Kazarnovskii, S. N. Zhur. Obshch. Khim. 1960, 30, 1631.

    11. [11]

      Segura José, L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40, 1372.
       

    12. [12]

      Hicks, R. G. Org. Biomol. Chem. 2007, 5, 1321.  doi: 10.1039/b617142g

    13. [13]

      Woodward, A. N.; Kolesar, J. M.; Hall, S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. J. Am. Chem. Soc. 2017, 139, 8467.  doi: 10.1021/jacs.7b01005

    14. [14]

      Moulin, E.; Niess, F.; Maaloum, M.; Buhler, E.; Nyrkova, I.; Giuseppone, N. Angew. Chem., Int. Ed. 2010, 49, 6974.  doi: 10.1002/anie.201001833

    15. [15]

      Li, H.; Zhu, Z.; Fahrenbach, A. C.; Savoie, B. M.; Ke, C.; Barnes, J. C.; Lei, J.; Zhao, Y. L.; Lilley, L. M.; Marks, T. J.; Ratner, M. A.; Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 456.  doi: 10.1021/ja310060n

    16. [16]

      Benson, C. R.; Fatila, E. M.; Lee, S.; Marzo, M. G.; Pink, M.; Mills, M. B.; Preuss, K. E.; Flood, A. H. J. Am. Chem. Soc. 2016, 138, 15057.  doi: 10.1021/jacs.6b09459

    17. [17]

      Ulas, G.; Lemmin, T.; Wu, Y.; Gassner, G. T.; DeGrado, W. F. Nat. Chem. 2016, 8, 354.  doi: 10.1038/nchem.2453

    18. [18]

      Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621.  doi: 10.1021/ar020254k

    19. [19]

      Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.

    20. [20]

      Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.  doi: 10.1021/acs.chemrev.5b00341

    21. [21]

      Song, Q.; Li, F.; Wang, Z.; Zhang, X. Chem. Sci. 2015, 6, 3342.  doi: 10.1039/C5SC00862J

    22. [22]

      Tauber, M. J.; Kelley, R. F.; Giaimo, J. M.; Rybtchinski, B.; Wasielewski, M. R. J. Am. Chem. Soc. 2006, 128, 1782.  doi: 10.1021/ja057031k

    23. [23]

      Marcon, R. O.; Brochsztain, S. J. Phys. Chem. A 2009, 113, 1747.  doi: 10.1021/jp808383e

    24. [24]

      Jiao, Y.; Liu, K.; Wang, G.; Wang, Y.; Zhang, X. Chem. Sci. 2015, 6, 3975.  doi: 10.1039/C5SC01167A

    25. [25]

      Yang, Y.; He, P.; Wang, Y.; Bai, H.; Wang, S.; Xu, J.-F.; Zhang, X. Angew. Chem., Int. Ed. 2017, 56, 16239.  doi: 10.1002/anie.v56.51

    26. [26]

      Neyens, E.; Baeyens, J. J. Hazard. Mater. 2003, 98, 33.  doi: 10.1016/S0304-3894(02)00282-0

    27. [27]

      Pignatello, J. J.; Oliveros, E.; MacKay, A. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1.  doi: 10.1080/10643380500326564

    28. [28]

      Jiao, Y.; Li, W.-L.; Xu, J.-F.; Wang, G.; Li, J.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 8933.  doi: 10.1002/anie.201603182

    29. [29]

      Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. Rev. 2007, 36, 267.  doi: 10.1039/B603088M

    30. [30]

      Ko, Y. H.; Kim, H.; Kim, Y.; Kim, K. Angew. Chem., Int. Ed. 2008, 47, 4106.

    31. [31]

      Smith, L. C.; Leach, D. G.; Blaylock, B. E.; Ali, O. A.; Urbach, A. R. J. Am. Chem. Soc. 2015, 137, 3663.  doi: 10.1021/jacs.5b00718

    32. [32]

      Tang, B.; Li, W.-L.; Jiao, Y.; Lu, J.-B.; Xu, J.-F.; Wang, Z.; Li, J.; Zhang, X. Chem. Sci. 2018, 9, 5015.  doi: 10.1039/C8SC01434E

    33. [33]

      Lucio Anelli, P.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559.  doi: 10.1021/jo00388a038

    34. [34]

      Ding, B.; Ye, Y.; Yin, Q.; Cui, J.; Wang, K.; Luo, J.; Jiang, B. Acta Chim. Sinica 2009, 67, 1383.  doi: 10.3321/j.issn:0567-7351.2009.12.017
       

    35. [35]

      Endo, T.; Miyazawa, T.; Shiihashi, S.; Okawara, M. J. Am. Chem. Soc. 1984, 106, 3877.  doi: 10.1021/ja00325a038

    36. [36]

      Yang, C.; Fontaine, O.; Tarascon, J. M.; Grimaud, A. Angew. Chem., Int. Ed. 2017, 56, 8652.  doi: 10.1002/anie.v56.30

    37. [37]

      Jiao, Y.; Tang, B.; Zhang, Y.; Xu, J.-F.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2018, 57, 6077.  doi: 10.1002/anie.v57.21

  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    13. [13]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(48)
  • Abstract views(2120)
  • HTML views(501)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return