Citation: Ma Xingxing, Xuan Qingqing, Song Qiuling. N—H and O—H Difluoromethylation of N-Heterocycles[J]. Acta Chimica Sinica, ;2018, 76(12): 972-976. doi: 10.6023/A18070265 shu

N—H and O—H Difluoromethylation of N-Heterocycles

  • Corresponding author: Song Qiuling, qsong@hqu.edu.cn
  • Received Date: 11 July 2018
    Available Online: 7 December 2018

    Fund Project: the Recruitment Program of Global Experts and the Natural Science Foundation of Fujian Province 2016J01064the National Natural Science Foundation of China 21772046Project supported by the National Natural Science Foundation of China (No. 21772046), the Recruitment Program of Global Experts and the Natural Science Foundation of Fujian Province (No. 2016J01064)

Figures(3)

  • It is known that fluorine is the strongest in electronegativity and a peculiar element. Fluorinated compounds are extensively applied in the areas of pharmaceuticals, agrochemical, materials, life sciences, etc., due to the unique chemical, physical and biological properties of fluorine-containing compounds. Therefore, the development of expedient synthetic strategies for the introduction of —F, —CF2H and —CF3 into organic compounds has attracted much attentions of chemists. Although trifluoromethylation has been well developed, difluoromethylation has been less reported. We found that difluorocarbene (:CF2) could be generated in situ from ethyl bromodifluoroacetate (BrCF2COOEt) in the presence of Na2CO3, which could go through N—H, O—H difluoromethylation smoothly. The scope of substrates was broad, and various functional groups, such as halogen, formyl group, nitro-group, nitrile and so on could be tolerated well. This would be a potential and practical reaction in modification of various bioactive drugs beause benzimidazole, indazole and pyridine are the skeleton of medicine and nature molecule. In addition, a representative procedure for this reaction is as following: An oven-dried Schlenk tube (10 mL) was equipped with a magnetic stir bar, the substrates of nitrogen-containing or oxygen-containing (0.3 mmol), the base (Na2CO3, 2 equiv., 0.6 mmol), ethyl bromodifluoroacetate (1.2 equiv., 0.36 mmol). The flask was evacuated and backfilled with N2 for 3 times, acetone or acetonitrile as a solvent for 24 h under N2 atmosphere. Where after the solvent concentrated in vacuo and the residue was purified by chromatography on silica gel with ethyl acetate:petroleum ether (EA:PE=1:30) to afford the corresponding products.
  • 加载中
    1. [1]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881; (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470; (c) Hiyama, T. Organofluorine Compounds Chemistry and Applications, Springer-Verlag, Berlin Heidelberg, 2000; (d) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308; (e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (e) Wang, J.; Sanchez-Rosello, M.; Acen, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432; (f) Brahms, D.; Dailey, W. Chem. Rev. 1996, 96, 1585; (g) Dolbier, W.; Battiste, M. Chem. Rev. 2003, 103, 1071; (h) Fedoryński, M. Chem. Rev. 2003, 103, 1099; (i) Ed.: Hiyama, T., Organofluorine Compounds: Chemistry and Applications, Springer, New York, 2000; (j) Hong, M.; Min, J.; Wang, S. Chin. J. Org. Chem. 2018, 38, 1907. (洪梅, 闵洁, 王石发, 有机化学, 2018, 38, 1907.)

    2. [2]

      (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626; (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529; (c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305; (d) Prakash, G. K. S.; Chacko, S. Curr. Opin. Drug Discovery Dev. 2008, 11, 793; (e) Feng, Z.; Min, Q.-Q.; Fu, X-P.; An, L.; Zhang, X. Nature Chem. 2017, 9, 918; (f) Ge, S.; Chaladaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149; (g) Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. J. Med. Chem. 2017, 60, 797; (h) Xu, C.; Guo, W-H.; He, X.; G, Y-L.; Zhang, X.-Y.; Zhang, X. Nat. Commun. 2018, 9, 1170; (i) Gu, Y.; Leng, X.; Shen, Q. Nat. Commun. 2014, 5, 5405; (j) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001.

    3. [3]

      (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465; (b) Hu, J.; Ni, C. Synthesis 2014, 46, 842; (c) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525; (d) Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 1991, 91, 165; (e) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827; (f) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (g) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105. (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105); (h) Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115. (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115); (i) Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60. (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60); (j) Zhang, L.; Wu, B.; Chen, Z.; Hu, J. Chin. J. Org. Chem. 2018, 38, 2028. (章吕烨, 吴彬强, 陈张涛, 胡锦锦, 曾晓飞, 钟国富, 有机化学, 2018, 38, 2028); (k) Chen, C.; Fu, L.; Chen, P.; Liu, G. Chin. J. Chem. 2017, 35, 1781.

    4. [4]

      (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470; (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475; (c) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048; (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765; (e) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90. (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90); (f) Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744. (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744); (g) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.

    5. [5]

      (a) Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 3206; (b) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2013, 52, 12390; (c) Gu, J-W.; Zhang, X. Org. Lett. 2015, 17, 5384; (d) Flynn, R. M.; Burton, D. J. J. Fluorine Chem. 2011, 132, 815; (e) Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44; (f) Ke, M.; Song, Q. J. Org. Chem. 2016, 81, 3654; (g) Ke, M.; Song, Q. Chem. Commun. 2017, 53, 2222; (h) Ke, M.; Song, Q. Adv. Synth. Catal. 2017, 359, 384; (i) Ke, M.; Feng, Q.; Yang, K.; Song, Q. Org. Chem. Front. 2016, 3, 150; (j) Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103; (k) Araki, K.; Inoue, M. Tetrahedron 2013, 69, 3913; (l) Belhomme, M.-C.; Poisson, T.; Pannecoucke, X. Org. Lett. 2013, 15, 3428; (m) Feng, Z.; Min, Q.-Q.; Fu, X-P.; An, L.; Zhang, X. Nature Chem. 2017, 9, 918.

    6. [6]

      (a) Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014; (b) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832; (c) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532; (d) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545; (e) Huiban, M.; Tredwell, M.; Mizuta, S.; Wan, Z.; Zhang, X.; Collier, T. L.; Gouverneur, V.; Passchier, J. Nat. Chem. 2013, 5, 941; (f) van der Born, D.; Sewing, C.; Herscheid, J. D. M.; Windhorst, A. D.; Orru, R. V. A.; Vugts, D. J. Angew. Chem., Int. Ed. 2014, 53, 11046; (g) Ivashkin, P.; Lemonnier, G.; Cousin, J.; Grégoire, V.; Labar, D.; Jubault, P.; Pannecoucke, X. Chem.-Eur. J. 2014, 20, 9514; (h) Ruhl, T.; Rafique, W.; Lien, V. T.; Riss, P. J. Chem. Commun. 2014, 50, 6056.

    7. [7]

      See reviews for the formation of: CF2H (a) Fu, X.-P.; Xiao, Y.-L.; Zhang, X. Chin. J. Chem. 2018, 36, 143; (b) Zhang, W.; Zhu, L.; Hu, J. Tetrahedron 2007, 63, 10569. See reviews for difluoro-cyclopro-panes: (c) Toshiyuki, I. Current Fluoroorganic Chemistry, Vol. 949, ACS Symposium Series, American Chemical Society, 2007, pp. 352-362; (d) Burch, J. D.; Barrett, K.; Chen, Y.; DeVoss, J.; Eigenbrot, C.; Goldsmith, R.; Ismaili, M. H. A.; Lau, K.; Lin, Z.; Ortwine, D. F.; Zarrin, A. A.; McEwan, P. A.; Barker, J. J.; Ellebrandt, C.; Kordt, D.; Stein, D. B.; Wang, X.; Chen, Y.; Hu, B.; Xu, X.; Yuen, P.-W.; Zhang, Y.; Pei, Z. J. Med. Chem. 2015, 58, 3806; (e) Dantzig, A. H.; Shepard, R. L.; Law, K. L.; Tabas, L.; Pratt, S.; Gillespie, J. S.; Binkley, S. N.; Kuhfeld, M. T.; Starling, J. J.; Wrighton, S. A. J. Pharmacol. Exp. Ther. 1999, 290, 854; (f) Itoh, T.; Kanbara, M.; Ohashi, M.; Hayase, S.; Kawatsura, M.; Kato, T.; Miyazawa, K.; Takagi, Y.; Uno, H. J. Fluorine Chem. 2007, 128, 1112.

    8. [8]

      (a) Fuchibe, K.; Aono, T.; Hu, J.; Ichikawa, J. Org. Lett. 2016, 18, 4502; see reviews for[3+2] and[2+2+1] cyclizations: (b) Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496 and refs therein; (c) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49; (d) Frü hauf, H.-W. Chem. Rev. 1997, 97, 523; see reviews for Junji Ichikawa's previous works about transition metal difluorocarbene complexes: (e) Aono, T.; Sasagawa, H.; Fuchibe, K.; Ichikawa, J. Org. Lett. 2015, 17, 5736.

    9. [9]

      Imidazole derivatives play an important role in chemical and biological systems, see reviews: (a) Bando, T.; Sugiyama, H. Acc. Chem. Res. 2006, 39, 935; (b) Breslow, R. Acc. Chem. Res. 1991, 24, 317; (c) Townsend, L. B. Chem. Rev. 1967, 67, 533; (d) Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Chem. Soc. Rev. 2015, 44, 193.

    10. [10]

      (a) Ma, X.; Zhou, Y.; Song, Q. Org. Lett. 2018, 20, 4777; (b) Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Chem. Commun. 2018, 54, 8960.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    4. [4]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(28)
  • Abstract views(1774)
  • HTML views(275)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return