Citation: Ma Xingxing, Xuan Qingqing, Song Qiuling. N—H and O—H Difluoromethylation of N-Heterocycles[J]. Acta Chimica Sinica, ;2018, 76(12): 972-976. doi: 10.6023/A18070265 shu

N—H and O—H Difluoromethylation of N-Heterocycles

  • Corresponding author: Song Qiuling, qsong@hqu.edu.cn
  • Received Date: 11 July 2018
    Available Online: 7 December 2018

    Fund Project: the Recruitment Program of Global Experts and the Natural Science Foundation of Fujian Province 2016J01064the National Natural Science Foundation of China 21772046Project supported by the National Natural Science Foundation of China (No. 21772046), the Recruitment Program of Global Experts and the Natural Science Foundation of Fujian Province (No. 2016J01064)

Figures(3)

  • It is known that fluorine is the strongest in electronegativity and a peculiar element. Fluorinated compounds are extensively applied in the areas of pharmaceuticals, agrochemical, materials, life sciences, etc., due to the unique chemical, physical and biological properties of fluorine-containing compounds. Therefore, the development of expedient synthetic strategies for the introduction of —F, —CF2H and —CF3 into organic compounds has attracted much attentions of chemists. Although trifluoromethylation has been well developed, difluoromethylation has been less reported. We found that difluorocarbene (:CF2) could be generated in situ from ethyl bromodifluoroacetate (BrCF2COOEt) in the presence of Na2CO3, which could go through N—H, O—H difluoromethylation smoothly. The scope of substrates was broad, and various functional groups, such as halogen, formyl group, nitro-group, nitrile and so on could be tolerated well. This would be a potential and practical reaction in modification of various bioactive drugs beause benzimidazole, indazole and pyridine are the skeleton of medicine and nature molecule. In addition, a representative procedure for this reaction is as following: An oven-dried Schlenk tube (10 mL) was equipped with a magnetic stir bar, the substrates of nitrogen-containing or oxygen-containing (0.3 mmol), the base (Na2CO3, 2 equiv., 0.6 mmol), ethyl bromodifluoroacetate (1.2 equiv., 0.36 mmol). The flask was evacuated and backfilled with N2 for 3 times, acetone or acetonitrile as a solvent for 24 h under N2 atmosphere. Where after the solvent concentrated in vacuo and the residue was purified by chromatography on silica gel with ethyl acetate:petroleum ether (EA:PE=1:30) to afford the corresponding products.
  • 加载中
    1. [1]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881; (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470; (c) Hiyama, T. Organofluorine Compounds Chemistry and Applications, Springer-Verlag, Berlin Heidelberg, 2000; (d) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308; (e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (e) Wang, J.; Sanchez-Rosello, M.; Acen, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432; (f) Brahms, D.; Dailey, W. Chem. Rev. 1996, 96, 1585; (g) Dolbier, W.; Battiste, M. Chem. Rev. 2003, 103, 1071; (h) Fedoryński, M. Chem. Rev. 2003, 103, 1099; (i) Ed.: Hiyama, T., Organofluorine Compounds: Chemistry and Applications, Springer, New York, 2000; (j) Hong, M.; Min, J.; Wang, S. Chin. J. Org. Chem. 2018, 38, 1907. (洪梅, 闵洁, 王石发, 有机化学, 2018, 38, 1907.)

    2. [2]

      (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626; (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529; (c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305; (d) Prakash, G. K. S.; Chacko, S. Curr. Opin. Drug Discovery Dev. 2008, 11, 793; (e) Feng, Z.; Min, Q.-Q.; Fu, X-P.; An, L.; Zhang, X. Nature Chem. 2017, 9, 918; (f) Ge, S.; Chaladaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149; (g) Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. J. Med. Chem. 2017, 60, 797; (h) Xu, C.; Guo, W-H.; He, X.; G, Y-L.; Zhang, X.-Y.; Zhang, X. Nat. Commun. 2018, 9, 1170; (i) Gu, Y.; Leng, X.; Shen, Q. Nat. Commun. 2014, 5, 5405; (j) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001.

    3. [3]

      (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465; (b) Hu, J.; Ni, C. Synthesis 2014, 46, 842; (c) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525; (d) Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 1991, 91, 165; (e) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827; (f) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (g) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105. (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105); (h) Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115. (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115); (i) Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60. (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60); (j) Zhang, L.; Wu, B.; Chen, Z.; Hu, J. Chin. J. Org. Chem. 2018, 38, 2028. (章吕烨, 吴彬强, 陈张涛, 胡锦锦, 曾晓飞, 钟国富, 有机化学, 2018, 38, 2028); (k) Chen, C.; Fu, L.; Chen, P.; Liu, G. Chin. J. Chem. 2017, 35, 1781.

    4. [4]

      (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470; (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475; (c) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048; (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765; (e) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90. (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90); (f) Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744. (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744); (g) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.

    5. [5]

      (a) Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 3206; (b) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2013, 52, 12390; (c) Gu, J-W.; Zhang, X. Org. Lett. 2015, 17, 5384; (d) Flynn, R. M.; Burton, D. J. J. Fluorine Chem. 2011, 132, 815; (e) Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44; (f) Ke, M.; Song, Q. J. Org. Chem. 2016, 81, 3654; (g) Ke, M.; Song, Q. Chem. Commun. 2017, 53, 2222; (h) Ke, M.; Song, Q. Adv. Synth. Catal. 2017, 359, 384; (i) Ke, M.; Feng, Q.; Yang, K.; Song, Q. Org. Chem. Front. 2016, 3, 150; (j) Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103; (k) Araki, K.; Inoue, M. Tetrahedron 2013, 69, 3913; (l) Belhomme, M.-C.; Poisson, T.; Pannecoucke, X. Org. Lett. 2013, 15, 3428; (m) Feng, Z.; Min, Q.-Q.; Fu, X-P.; An, L.; Zhang, X. Nature Chem. 2017, 9, 918.

    6. [6]

      (a) Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014; (b) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832; (c) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532; (d) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545; (e) Huiban, M.; Tredwell, M.; Mizuta, S.; Wan, Z.; Zhang, X.; Collier, T. L.; Gouverneur, V.; Passchier, J. Nat. Chem. 2013, 5, 941; (f) van der Born, D.; Sewing, C.; Herscheid, J. D. M.; Windhorst, A. D.; Orru, R. V. A.; Vugts, D. J. Angew. Chem., Int. Ed. 2014, 53, 11046; (g) Ivashkin, P.; Lemonnier, G.; Cousin, J.; Grégoire, V.; Labar, D.; Jubault, P.; Pannecoucke, X. Chem.-Eur. J. 2014, 20, 9514; (h) Ruhl, T.; Rafique, W.; Lien, V. T.; Riss, P. J. Chem. Commun. 2014, 50, 6056.

    7. [7]

      See reviews for the formation of: CF2H (a) Fu, X.-P.; Xiao, Y.-L.; Zhang, X. Chin. J. Chem. 2018, 36, 143; (b) Zhang, W.; Zhu, L.; Hu, J. Tetrahedron 2007, 63, 10569. See reviews for difluoro-cyclopro-panes: (c) Toshiyuki, I. Current Fluoroorganic Chemistry, Vol. 949, ACS Symposium Series, American Chemical Society, 2007, pp. 352-362; (d) Burch, J. D.; Barrett, K.; Chen, Y.; DeVoss, J.; Eigenbrot, C.; Goldsmith, R.; Ismaili, M. H. A.; Lau, K.; Lin, Z.; Ortwine, D. F.; Zarrin, A. A.; McEwan, P. A.; Barker, J. J.; Ellebrandt, C.; Kordt, D.; Stein, D. B.; Wang, X.; Chen, Y.; Hu, B.; Xu, X.; Yuen, P.-W.; Zhang, Y.; Pei, Z. J. Med. Chem. 2015, 58, 3806; (e) Dantzig, A. H.; Shepard, R. L.; Law, K. L.; Tabas, L.; Pratt, S.; Gillespie, J. S.; Binkley, S. N.; Kuhfeld, M. T.; Starling, J. J.; Wrighton, S. A. J. Pharmacol. Exp. Ther. 1999, 290, 854; (f) Itoh, T.; Kanbara, M.; Ohashi, M.; Hayase, S.; Kawatsura, M.; Kato, T.; Miyazawa, K.; Takagi, Y.; Uno, H. J. Fluorine Chem. 2007, 128, 1112.

    8. [8]

      (a) Fuchibe, K.; Aono, T.; Hu, J.; Ichikawa, J. Org. Lett. 2016, 18, 4502; see reviews for[3+2] and[2+2+1] cyclizations: (b) Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496 and refs therein; (c) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49; (d) Frü hauf, H.-W. Chem. Rev. 1997, 97, 523; see reviews for Junji Ichikawa's previous works about transition metal difluorocarbene complexes: (e) Aono, T.; Sasagawa, H.; Fuchibe, K.; Ichikawa, J. Org. Lett. 2015, 17, 5736.

    9. [9]

      Imidazole derivatives play an important role in chemical and biological systems, see reviews: (a) Bando, T.; Sugiyama, H. Acc. Chem. Res. 2006, 39, 935; (b) Breslow, R. Acc. Chem. Res. 1991, 24, 317; (c) Townsend, L. B. Chem. Rev. 1967, 67, 533; (d) Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Chem. Soc. Rev. 2015, 44, 193.

    10. [10]

      (a) Ma, X.; Zhou, Y.; Song, Q. Org. Lett. 2018, 20, 4777; (b) Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Chem. Commun. 2018, 54, 8960.

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(28)
  • Abstract views(1746)
  • HTML views(275)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return