Citation: Sun Cai-Li, Teng Kun-Xu, Niu Li-Ya, Chen Yu-Zhe, Yang Qing-Zheng. Synthesis and Photophysical Studies of Naphthalene Diimide-based[3]Rotaxanes[J]. Acta Chimica Sinica, ;2018, 76(10): 779-784. doi: 10.6023/A18070258 shu

Synthesis and Photophysical Studies of Naphthalene Diimide-based[3]Rotaxanes

  • Corresponding author: Chen Yu-Zhe, chenyuzhe@mail.ipc.ac.cn Yang Qing-Zheng, qzyang@bnu.edu.cn
  • Received Date: 4 July 2018
    Available Online: 13 October 2018

    Fund Project: the National Natural Science Foundation of China 21561130149the National Natural Science Foundation of China 21525206the National Natural Science Foundation of China 21474124Project supported by the National Natural Science Foundation of China (Nos. 21525206, 21561130149 and 21474124) and the Newton Advanced Fellowship

Figures(7)

  • Rotaxanes, composed of macrocyclic wheel and linear axle, have been used in areas such as molecular machines, stimuli-responsive materials, information storage, supramolecular catalysts. The macrocyclic host and its noncovalent interaction are key for the rotaxanes. Pillar[n]arenes (n=5~10) have drew much attention as widely-used hosts. Their facile synthesis, unique rigid structure, versatile functionalization, and interesting host-guest properties enable pillar[n]arenes to build various supramolecular architectures including rotaxanes. Currently, the research of pillararene-based rotaxanes mainly focuses on the synthesis, the responsiveness to temperature and solvent, and the application as catalyst, however, reports of emissive pillararene-based rotaxanes are very rare. Besides, higher-ordered[n]rotaxanes (n ≥ 3) based on pillararene remain rarely explored limited by the poor synthetic yield, despite their fascinating structure and potential applications in molecular devices. Herein, we report two pillararene-based rotaxanes ([3]R and [3]R') incorporating naphthalene diimide with red fluorescence in solid state. The 1, 4-diethoxypillar[5]arene (EtP5A) was chosen as the wheel, diamino-substituted naphthalene diimides (NDI) were used as the axle containing two separated linear guest parts for EtP5A. The addition reaction of NDI-precursor S1/S2 and the stopper 3, 5-dimethylphenyl isocyanate with the presence of EtP5A afforded [3]R and[2]R (byproduct as model compound)/[3]R', respectively, with high yield of 45% for [3]R and 62% for [3]R'. The structures of rotaxanes were confirmed by 1H NMR spectroscopy, ROESY (rotating frame Overhause enhancement spectroscopy), and HR-ESI-MS. Limited by the length of linear chains, EtP5As are adjacent tightly to NDI in [3]R, whereas EtP5As stay four-atom distance away from NDI in 3[R]'. The optical properties of rotaxanes in various solvents and in powders were detected. [3]R and [3]R' show bright red fluorescence not only in solution but also in solid state, which distinguishes [3]R and [3]R' from [2]R and most of NDI-based fluorescent compounds. The increased fluorescence in solid state of [3]R and [3]R' benefits from the bulky EtP5As hindering the π-π interaction and suppressing the self-quenching of NDI. We suspect that [3]R and [3]R' may have potential applications in red-emitting materials and optoelectronic devices.
  • 加载中
    1. [1]

      Xue, M.; Yang, Y.; Chi, X.; Yan, X.; Huang, F. Chem. Rev. 2015, 115, 7398.  doi: 10.1021/cr5005869

    2. [2]

      (a) Yang, W. ; Li, Y. ; Liu, H. ; Chi, L. ; Li, Y. Small 2012, 8, 504. (b) van Dongen, S. F. ; Cantekin, S. ; Elemans, J. A. ; Rowan, A. E. ; Nolte, R. J. Chem. Soc. Rev. 2014, 43, 99. (c) Qu, D. H. ; Wang, Q. C. ; Zhang, Q. W. ; Ma, X. ; Tian, H. Chem. Rev. 2015, 115, 7543. (d) Erbas-Cakmak, S. ; Leigh, D. A. ; McTernan, C. T. ; Nussbaumer, A. L. Chem. Rev. 2015, 115, 10081. (e) Han, X. ; Li, Z. ; Xu, Z. ; Zhao, Z. ; Liu, S. H. ; Yin, J. Chin. J. Chem. 2017, 35, 1050. (f) Lu, Y. ; Liang, D. -D. ; Fu, Z. -D. ; Guo, Q. -H. ; Wang, M. -X. Chin. J. Chem. 2018, 36, 630.

    3. [3]

      Qu, D.-H.; Ji, F.-Y.; Wang, Q.-C.; Tian, H. Adv. Mater. 2006, 18, 2035.  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Meng, Z.; Xiang, J.-F.; Chen, C.-F. Chem. Sci. 2014, 5, 1520.  doi: 10.1039/c3sc53295j

    5. [5]

      Wang, Y.; Tian, Y.; Chen, Y.-Z.; Niu, L.-Y.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z.; Boulatov, R. Chem. Commun. 2018, 54, 7991.  doi: 10.1039/C8CC04542A

    6. [6]

      Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; John-ston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414.  doi: 10.1038/nature05462

    7. [7]

      Lewandowski, B.; De Bo, G.; Ward, J. W.; Papmeyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M.; Heckmann, D.; Goldup, S. M.; D'Souza, D. M.; Fernandes, A. E.; Leigh, D. A. Science 2013, 339, 189.  doi: 10.1126/science.1229753

    8. [8]

    9. [9]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    10. [10]

      (a) Hu, X.-B.; Chen, L.; Si, W.; Yu, Y.; Hou, J.-L. Chem. Commun. 2011, 47, 4694. (b) Li, S.-H.; Zhang, H.-Y.; Xu, X.; Liu, Y. Nat. Commun. 2015, 6, 7590. (c) Sun, C.-L.; Xu, J.-F.; Chen, Y.-Z.; Niu, L.-Y.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Chin. Chem. Lett. 2015, 26, 843. (d) Zhou, Y.; Jie, K.; Shi, B.; Yao, Y. Chem. Commun. 2015, 51, 11112. (e) Tan, L. L.; Li, H.; Tao, Y.; Zhang, S. X.-A.; Wang, B.; Yang, Y.-W. Adv. Mater. 2014, 26, 7027. (f) Sun, C.-L.; Xu, J.-F., Chen, Y.-Z.; Niu, L.-Y.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Polym. Chem. 2016. 7, 2057. (g) Ma, L.; Wang, S.; Li, C.; Cao, D.; Li, T.; Ma, X. Chem. Commun. 2018, 54, 2405. (h) Sun, C.-L.; Peng, H.-Q.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Chem. Commun. 2018, 54, 1117. (i) Song, N.; Kakuta, T.; Yamagishi, T.; Yang, Y.-W.; Ogoshi, T. 10. 1016/j. chempr. 2018.05.015. (j) Wu, J.-R.; Mu, A. U.; Li, B.; Wang, C.-Y.; Fang, L.; Yang, Y.-W. Angew. Chem. Int. Ed. 2018, 57, 9853.

    11. [11]

      (a) Chang, Y. ; Yang, K. ; Wei, P. ; Huang, S. ; Pei, Y. ; Zhao, W. ; Pei, Z. Angew. Chem. Int. Ed. 2014, 53, 13126. (b) Li, Z. -Y. ; Zhang, Y. ; Zhang, C. -W. ; Chen, L. -J. ; Wang, C. ; Tan, H. ; Yu, Y. ; Li, X. ; Yang, H. -B. J. Am. Chem. Soc. 2014, 136, 8577. (c) Yuan, B. ; Xu, J. -F. ; Sun, C. -L. ; Nicolas, H. ; Schönhoff, M. ; Yang, Q. -Z. ; Zhang, X. ACS Appl. Mater. Interfaces 2015, 8, 3679. (d) Zhang, M. ; Zhu, P. -P. ; Xin, P. ; Si, W. ; Li, Z. -T. ; Hou, J. -L. Angew. Chem. Int. Ed. 2017, 56, 2999. (e) Hao, Q. ; Chen, Y. ; Huang, Z. ; Xu, J. -F. ; Sun, Z. ; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 5365. (f) Wang, S. ; Xu, Z. ; Wang, T. ; Xiao, T. ; Hu, X. -Y. ; Shen, Y. -Z. ; Wang, L. Nat. Commun. 2018, 9, 1737. (g) Jie, K. ; Zhou, Y. ; Li, E. ; Li, Z. ; Zhao, R. ; Huang, F. J. Am. Chem. Soc. 2017, 139, 15320. (h) Jie, K. ; Zhou, Y. ; Li, E. ; Zhao, R. ; Liu, M. ; Huang, F. J. Am. Chem. Soc. 2018, 140, 3190. (i) Yang, K. ; Wen, J. ; Chao, S. ; Liu, J. ; Yang, K. ; Pei, Y. ; Pei, Z. Chem. Commun. 2018, 54, 5911. (j) Sun, C. -L. ; Gao, Z. ; Teng, K. -X. ; Niu, L. -Y. ; Chen, Y. -Z. ; Zhao, Y. S. ; Yang, Q. -Z. ACS Appl. Mater. Interfaces 10.1021/acsami.8b08490.

    12. [12]

      Strutt, N. L.; Forgan, R. S.; Spruell, J. M.; Botros, Y. Y.; Stoddart, J. F. J. Am. Chem. Soc. 2011, 133, 5668.  doi: 10.1021/ja111418j

    13. [13]

      Zhang, Z.; Han, C.; Yu, G.; Huang, F. Chem. Sci. 2012, 3, 3026.  doi: 10.1039/c2sc20728a

    14. [14]

      Ogoshi, T.; Aoki, T.; Shiga, R.; Iizuka, R.; Ueda, S.; Demachi, K.; Yamafuji, D.; Kayama, H.; Yamagishi, T. J. Am. Chem. Soc. 2012, 134, 20322.  doi: 10.1021/ja310757p

    15. [15]

    16. [16]

      (a) Ma, X. ; Tian, H. Chem. Soc. Rev. 2010, 39, 70. (b) Ogoshi, T. ; Yamafuji, D. ; Yamagishi, T. ; Brouwer, A. M. Chem. Commun. 2013, 49, 5468. (c) Sun, N. ; Xiao, X. ; Li, W. ; Jiang, J. Adv. Sci. 2015, 2, 1500082. (d) Yu, G. ; Wu, D. ; Li, Y. ; Zhang, Z. ; Shao, L. ; Zhou, J. ; Hu, Q. ; Tang, G. ; Huang, F. Chem. Sci. 2016, 7, 3017. (e) Delavaux-Nicot, B. ; Ben Aziza, H. ; Nierengarten, I. ; Minh Nguyet Trinh, T. ; Meichsner, E. ; Chessé, M. ; Holler, M. ; Abidi, R. ; Maisonhaute, E. ; Nierengarten, J. -F. Chem. Eur. J. 2018, 24, 133.

    17. [17]

      (a) Ogoshi, T. ; Yamafuji, D. ; Aoki, T. ; Kitajima, K. ; Yamagishi, T. ; Hayashi, Y. ; Kawauchi, S. Chem. Eur. J. 2012, 18, 7493. (b) Ke, C. ; Strutt, N. L. ; Li, H. ; Hou, X. ; Hartlieb, K. J. ; McGonigal, P. R. ; Ma, Z. ; Iehl, J. ; Stern, C. L. ; Cheng, C. ; Zhu, Z. ; Vermeulen, N. A. ; Meade, T. J. ; Botros, Y. Y. ; Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 17019. (c) Hou, X. ; Ke, C. ; Cheng, C. ; Song, N. ; Blackburn, A. K. ; Sarjeant, A. A. ; Botros, Y. Y. ; Yang, Y. W. ; Stoddart, J. F. Chem. Commun. 2014, 50, 6196.

    18. [18]

      Suraru, S. -L. ; Würthner, F. Angew. Chem. Int. Ed. 2014, 53, 7428. (b) Fan, W. ; Liu, C. ; Li, Y. ; Wang, Z. Chem. Commun. 2017, 53, 188. (c) Shi, Y. ; Ni, Z. ; Zhen, Y. ; Dong, H. ; Hu, W. Chin. J. Org. Chem. 2016, 36, 1741(in Chinese). (石燕君, 倪振杰, 甄永刚, 董焕丽, 胡文平, 有机化学, 2016, 36, 1741. ). (d) Jia, T. ; Zheng, N. ; Cai, W. ; Ying, L. ; Huang, F. Acta Chim. Sinica 2017, 75, 808(in Chinese). (贾涛, 郑楠楠, 蔡万清, 应磊, 黄飞, 化学学报, 2017, 75, 808. )

    19. [19]

      (a) Würthner, F. ; Ahmed, S. ; Thalacker, C. ; Debaerdemaeker, T. Chem. Eur. J. 2002, 8, 4742. (b) Sakai, N. ; Mareda, J. ; Vauthey, E. ; Matile, S. Chem. Commun. 2010, 46, 4225.

    20. [20]

      Ogoshi, T.; Kitajima, K.; Aoki, T.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Org. Chem. 2010, 75, 3268.  doi: 10.1021/jo100273n

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(13)
  • Abstract views(1301)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return