Citation: Qiu Huayu, Zhao Jingwen, Zhou Xinhong, Cui Guanglei. Research Progress of Ionic Liquid-Inorganic Particle Hybrid Electrolytes in Secondary Batteries[J]. Acta Chimica Sinica, ;2018, 76(10): 749-756. doi: 10.6023/A18060248 shu

Research Progress of Ionic Liquid-Inorganic Particle Hybrid Electrolytes in Secondary Batteries

  • Corresponding author: Zhao Jingwen, zhaojw@qibebt.ac.cn Zhou Xinhong, zxhhx2008@163.com Cui Guanglei, cuigl@qibebt.ac.cn
  • Received Date: 27 June 2018
    Available Online: 27 October 2018

    Fund Project: the National Natural Science Foundation of China 21601195Project supported by the National Natural Science Foundation of China (Nos. 21601195, 51625204, 21671196), the Qingdao Science and Technology Program (No. 17-1-1-30-jch) and the Qingdao Key Lab of Solar Energy Utilization & Energy Storage Technologythe Qingdao Science and Technology Program 17-1-1-30-jchthe National Natural Science Foundation of China 21671196the National Natural Science Foundation of China 51625204

Figures(4)

  • High-performance electrolyte is one of the key materials for achieving secondary batteries with high energy density, long cycle life and good safety. Traditional organic and aqueous systems, however, due to many restrictions (such as narrow potential window, low ionic conductivity, dendrite, gas expansion and corrosion, etc.), are unable to meet the demand of the further development for secondary batteries. In recent years, ionic liquid-inorganic particle hybrid electrolytes (IL-NPHE) have attracted much attention due to their high stabilities, non-combustibilities and various synergistic characteristics. This paper focuses on the latest research progress of IL-NPHE, and summarizes the physicochemical and electrochemical properties of this electrolyte system. Additionally, the synergistic mechanism between ionic liquid and inorganic particles is systematically summarized. Based on the above discussion, the future development trend and direction of IL-NPHE are prospected.
  • 加载中
    1. [1]

      Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938.  doi: 10.1126/science.aab1595

    2. [2]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy 2016, 1, 16039.  doi: 10.1038/nenergy.2016.39

    3. [3]

      Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M. A.; Cresce, A. V.; Wang, F.; Yang, C.; Hu, Y.-S.; Xu, K.; Wang, C. Adv. Energy Mater. 2017, 7, 1701189.  doi: 10.1002/aenm.201701189

    4. [4]

      Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.

    5. [5]

      Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508.  doi: 10.1021/cr1003248

    6. [6]

      Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123.  doi: 10.1039/B006677J

    7. [7]

      Scrosati, B.; Hassoun, J.; Sun, Y.-K. Energy Environ. Sci. 2011, 4, 3287.  doi: 10.1039/c1ee01388b

    8. [8]

      Xia, L.; Yu, L.-P.; Hu, D.; Chen, Z. Acta Chim. Sinica 2017, 75, 1183.
       

    9. [9]

      Wang, M.; Ma, R.-G.; Liu, Y.; Chung, C.-Y.; Deng, Y.-H.; Lu, Z.-G. Chin. J. Chem. 2017, 35, 1299.  doi: 10.1002/cjoc.v35.8

    10. [10]

      Scrosati, B.; Garche, J. J. Power Sources 2010, 195, 2419.  doi: 10.1016/j.jpowsour.2009.11.048

    11. [11]

      Herranz, J.; Garsuch, A.; Gasteiger, H. A. J. Phys. Chem. C 2012, 116, 19084.  doi: 10.1021/jp304277z

    12. [12]

      Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; Reiter, J. Nano Lett. 2014, 14, 6572.  doi: 10.1021/nl5031985

    13. [13]

      Nakamoto, H.; Suzuki, Y.; Shiotsuki, T.; Mizuno, F.; Higashi, S.; Takechi, K.; Asaoka, T.; Nishikoori, H.; Iba, H. J. Power Sources 2013, 243, 19.  doi: 10.1016/j.jpowsour.2013.05.147

    14. [14]

      Xu, J.-Q.; Yang, J.; NuLi, Y.-N.; Zhang, W.-B. Acta Chim. Sinica 2005, 63, 1733.  doi: 10.3321/j.issn:0567-7351.2005.18.018
       

    15. [15]

      Monti, D.; Jonsson, E.; Rosa Palacin, M.; Johansson, P. J. Power Sources 2014, 245, 630.  doi: 10.1016/j.jpowsour.2013.06.153

    16. [16]

      Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. J. Mater. Chem. A 2014, 2, 5655.  doi: 10.1039/c3ta15273a

    17. [17]

      Li, C.-Y.; Patra, J.; Yang, C.-H.; Tseng, C.-M.; Majumder, S. B.; Dong, Q.-F.; Chang, J.-K. ACS Sustainable Chem. Eng. 2017, 5, 8269.  doi: 10.1021/acssuschemeng.7b01939

    18. [18]

      Yamamoto, T.; Matsumoto, K.; Hagiwara, R.; Nohira, T. J. Phys. Chem. C 2017, 121, 18450.  doi: 10.1021/acs.jpcc.7b06523

    19. [19]

      Fu, L.-J.; Li, N.; Liu, Y.; Wang, W.-G.; Zhu, Y.-S.; Wu, Y.-P. Chin. J. Chem. 2017, 35, 13.  doi: 10.1002/cjoc.v35.1

    20. [20]

      Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. J. Phys. Chem. B 2007, 111, 11794.  doi: 10.1021/jp072998r

    21. [21]

      Lu, Y.; Das, S. K.; Moganty, S. S.; Archer, L. A. Adv. Mater. 2012, 24, 4430.  doi: 10.1002/adma.201201953

    22. [22]

      Lu, Y.; Moganty, S. S.; Schaefer, J. L.; Archer, L. A. J. Mater. Chem. 2012, 22, 4066.  doi: 10.1039/c2jm15345a

    23. [23]

      Chen, L.; Cros, C.; Castagnet, R.; Hagenmuller, P. Solid State Ionics 1988, 31, 209.  doi: 10.1016/0167-2738(88)90270-6

    24. [24]

      Shimano, S.; Zhou, H.; Honma, I. Chem. Mater. 2007, 19, 5216.  doi: 10.1021/cm0707814

    25. [25]

      Li, Z.-H.; Jiang, J.; Zhang, H.-P.; Wu, Y.-P. Acta Chim. Sinica 2007, 65, 1333.
       

    26. [26]

      Ueno, K.; Hata, K.; Katakabe, T.; Kondoh, M.; Watanabe, M. J. Phys. Chem. B 2008, 112, 9013.  doi: 10.1021/jp8029117

    27. [27]

      Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. J. Am. Chem. Soc. 2003, 125, 1166.  doi: 10.1021/ja029294+

    28. [28]

      Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Tak-igawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072.  doi: 10.1126/science.1082289

    29. [29]

      Hamm, S. C.; Basuray, S.; Mukherjee, S.; Sengupta, S.; Mathai, J. C.; Baker, G. A.; Gangopadhyay, S. J. Mater. Chem. A 2014, 2, 792.  doi: 10.1039/C3TA13431H

    30. [30]

      Li, M.; Zhu, W.; Zhang, P.; Chao, Y.; He, Q.; Yang, B.; Li, H.; Borisevich, A.; Dai, S. Small 2016, 12, 3535.  doi: 10.1002/smll.201600358

    31. [31]

      Taherkhani, F.; Kiani, S. J. Phys. Chem. C 2017, 121, 24434.  doi: 10.1021/acs.jpcc.7b08126

    32. [32]

      Neouze, M. A.; Le Bideau, J.; Leroux, F.; Vioux, A. Chem. Commun. 2005, 1082.

    33. [33]

      Litschauer, M.; Neouze, M.-A. J. Mater. Chem. 2008, 18, 640.  doi: 10.1039/B713442H

    34. [34]

      Richter, T. V.; Stelzl, F.; Schulz-Gericke, J.; Kerscher, B.; Wuerfel, U.; Niggemann, M.; Ludwigs, S. J. Mater. Chem. 2010, 20, 874.  doi: 10.1039/B916778C

    35. [35]

      Neouze, M.-A. J. Mater. Chem. 2010, 20, 9593.  doi: 10.1039/c0jm00616e

    36. [36]

      Le Bideau, J.; Viau, L.; Vioux, A. Chem. Soc. Rev. 2011, 40, 907.  doi: 10.1039/C0CS00059K

    37. [37]

      Moganty, S. S.; Srivastava, S.; Lu, Y.; Schaefer, J. L.; Rizvi, S. A.; Archer, L. A. Chem. Mater. 2012, 24, 1386.  doi: 10.1021/cm300424v

    38. [38]

      Li, Y.; Wong, K.-W.; Ng, K.-M. Chem. Commun. 2016, 52, 4369.  doi: 10.1039/C6CC01236A

    39. [39]

      Horowitz, A. I.; Panzer, M. J. J. Mater. Chem. 2012, 22, 16534.  doi: 10.1039/c2jm33496h

    40. [40]

      Lee, U. H.; Kudo, T.; Honma, I. Chem. Commun. 2009, 3068.

    41. [41]

      Wu, F.; Chen, N.; Chen, R.; Zhu, Q.; Ban, J.; Li, L. Chem. Mater. 2016, 28, 848.  doi: 10.1021/acs.chemmater.5b04278

    42. [42]

      Moganty, S. S.; Jayaprakash, N.; Nugent, J. L.; Shen, J.; Archer, L. A. Angew. Chem., Int. Ed. 2010, 49, 9158.  doi: 10.1002/anie.201004551

    43. [43]

      Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8, 1545.  doi: 10.1039/C5NR06888F

    44. [44]

      Deb, D.; Bhattacharya, S. J. Phys. Chem. C 2017, 121, 6962.  doi: 10.1021/acs.jpcc.6b11845

    45. [45]

      Dutta, B.; Deb, D.; Bhattacharya, S. Int. J. Hydrogen Energy 2018, 43, 4081.  doi: 10.1016/j.ijhydene.2017.08.065

    46. [46]

      Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q. J. Mater. Chem. A 2017, 5, 18012.  doi: 10.1039/C7TA04599A

    47. [47]

      Li, X.; Zhang, Z.; Yin, K.; Yang, L.; Tachibana, K.; Hirano, S.-I. J. Power Sources 2015, 278, 128.  doi: 10.1016/j.jpowsour.2014.12.053

    48. [48]

      Wu, F.; Chen, N.; Chen, R.; Wang, L.; Li, L. Nano Energy 2017, 31, 9.  doi: 10.1016/j.nanoen.2016.10.060

    49. [49]

      Li, X.; Zhang, Z.; Yang, L.; Tachibana, K.; Hirano, S.-I. J. Power Sources 2015, 293, 831.  doi: 10.1016/j.jpowsour.2015.06.033

    50. [50]

      Kim, J.-K.; Scheers, J.; Park, T. J.; Kim, Y. ChemSusChem 2015, 8, 636.  doi: 10.1002/cssc.v8.4

    51. [51]

      Bose, P.; Bhattacharya, S. J. Electrochem. Soc. 2017, 164, H788.  doi: 10.1149/2.1331712jes

    52. [52]

      Bose, P.; Bhattacharya, S. Int. J. Hydrogen Energy 2018, 43, 4090.  doi: 10.1016/j.ijhydene.2017.09.023

    53. [53]

      Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567.  doi: 10.1016/j.electacta.2006.03.016

    54. [54]

      Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601.  doi: 10.1016/j.jpowsour.2009.06.089

    55. [55]

      Garaga, M. N.; Persson, M.; Yaghini, N.; Martinelli, A. Soft Matter 2016, 12, 2583.  doi: 10.1039/C5SM02736E

    56. [56]

      Yuan, J.; Mecerreyes, D.; Antonietti, M. Prog. Polym. Sci. 2013, 38, 1009.  doi: 10.1016/j.progpolymsci.2013.04.002

    57. [57]

      Pont, A.-L.; Marcilla, R.; De Meatza, I.; Grande, H.; Mecerreyes, D. J. Power Sources 2009, 188, 558.  doi: 10.1016/j.jpowsour.2008.11.115

    58. [58]

      Mecerreyes, D. Prog. Polym. Sci. 2011, 36, 1629.  doi: 10.1016/j.progpolymsci.2011.05.007

    59. [59]

      Fukushima, T.; Kosaka, A.; Yamamoto, Y.; Aimiya, T.; Notazawa, S.; Takigawa, T.; Inabe, T.; Aida, T. Small 2006, 2, 554.

    60. [60]

      Li, X.; Li, S.; Zhang, Z.; Huang, J.; Yang, L.; Hirano, S.-I. J. Mater. Chem. A 2016, 4, 13822.  doi: 10.1039/C6TA04767J

    61. [61]

      Guyomard-Lack, A.; Abusleme, J.; Soudan, P.; Lestriez, B.; Guyomard, D.; Le Bideau, J. Adv. Energy Mater. 2014, 4, 1301570.  doi: 10.1002/aenm.201301570

    62. [62]

      Deb, D.; Bhattacharya, S. Electrochim. Acta 2017, 245, 430.  doi: 10.1016/j.electacta.2017.05.177

    63. [63]

      Goebel, R.; Hesemann, P.; Weber, J.; Moeller, E.; Friedrich, A.; Beuermann, S.; Taubert, A. Phys. Chem. Chem. Phys. 2009, 11, 3653.

    64. [64]

      Gupta, A. K.; Verma, Y. L.; Singh, R. K.; Chandra, S. J. Phys. Chem. C 2014, 118, 1530.  doi: 10.1021/jp408142a

    65. [65]

      Verma, Y. L.; Tripathi, A. K.; Shalu; Singh, V. K.; Balo, L.; Gupta, H.; Singh, S. K.; Singh, R. K. Mater. Sci. Eng., B 2017, 220, 37.

    66. [66]

      Korf, K. S.; Lu, Y.; Kambe, Y.; Archer, L. A. J. Mater. Chem. A 2014, 2, 11866.

    67. [67]

      Archie, G. E. Trans. Am. Inst. Min., Metall. Pet. Eng. 1942, 146, 54.

    68. [68]

      Maier, J. Nat. Mater. 2005, 4, 805.  doi: 10.1038/nmat1513

    69. [69]

      Maier, J. J. Electroceram. 2015, 34, 69.

    70. [70]

      Wang, H.; Xu, X.-Q.; Shi, J.-F.; Xu, G. Acta Phys.-Chim. Sin. 2007, 29, 525.

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(15)
  • Abstract views(1967)
  • HTML views(358)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return