Citation: Gu Pengcheng, Song Shuang, Zhang Sai, Wei Benben, Wen Tao, Wang Xiangke. Enrichment of U(Ⅵ) on Polyaniline Modified Mxene Composites Studied by Batch Experiment and Mechanism Investigation[J]. Acta Chimica Sinica, ;2018, 76(9): 701-708. doi: 10.6023/A18060245 shu

Enrichment of U(Ⅵ) on Polyaniline Modified Mxene Composites Studied by Batch Experiment and Mechanism Investigation

  • Corresponding author: Wang Xiangke, xkwang@ncepu.edu.cn
  • Received Date: 24 June 2018
    Available Online: 27 September 2018

    Fund Project: the financial support from the National Key Research and Development Program of China 2017YFA0207002Project supported by the financial support from the National Key Research and Development Program of China (No. 2017YFA0207002), National Natural Science Foundation of China (Nos. 21577032 and 21707033) and the NCEPU "Double First-Class" Graduate Talent Cultivation Program (No. 035/XM1805316)the NCEPU "Double First-Class" Graduate Talent Cultivation Program 035/XM1805316National Natural Science Foundation of China 21707033National Natural Science Foundation of China 21577032

Figures(5)

  • Remediation of nuclear wastewater containing U(Ⅵ) is very important to human health and environmental ecosystems. Recently, numerous kinds of adsorbents such as clay minerals, carbon-based material and layered double hydroxides etc. have been extensively investigated for effective containing U(Ⅵ) wastewater treatment. A representative class of two-dimensional material, "Mxene" has received multidisciplinary interests due to their widespread application in the fields of batteries, supercapacitors and wastewater treatment. Unfortunately, the adsorption capacity of pristine Mxene is frequently limited due to the low quantity of surface functional groups. It was obviously that synthesizing functionalized Mxene materials with plenty functional groups is of great importance for wastewater remediation. In this manuscript, polyaniline modified Mxene composites (PANI/Ti3C2Tx) were successfully synthesized by a in situ polymerization method and were characterized by a series of methods including SEM, FT-IR, XRD and XPS techniques. The adsorption behavior of U(Ⅵ) on PANI/Ti3C2Tx was systematically explored by batch experiment. The experiment results showed that the removal process was obviously affected by the ion strength, indicating the formation of outer-sphere surface complexes. Meanwhile, the thermodynamic results manifested that the adsorption process was spontaneous and endothermic reaction. Based on Langmuir model fit, the maximum adsorption capacity of U(Ⅵ) on polyaniline modified Mxene composites was calculated to be 102.8 mg/g at pH=5.0 and 298 K, which was superior than that of U(Ⅵ) on pristine Ti3C2Tx (36.6 mg/g). In addition, spectroscopy characterizations including Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were applied to study the underlying interaction mechanism, which was mainly attributed to the strong surface complexion between surface functional groups (oxygen-containing groups and amino groups) and U(Ⅵ). This work herein pointed out that PANI/Ti3C2Tx materials were promising adsorbent for the efficient removal of U(Ⅵ) in the environmental pollution remediation.
  • 加载中
    1. [1]

      Ma, L.; Wang, Q.; Islam, S.; Liu, Y.; Ma, S.; Kanatzidis, M. J. Am. Chem. Soc. 2016, 138, 2858.  doi: 10.1021/jacs.6b00110

    2. [2]

      Manos, M.; Kanatzidis, M. J. Am. Chem. Soc. 2012, 134, 16441.  doi: 10.1021/ja308028n

    3. [3]

      Song, S.; Huang, S.; Zhang, R.; Chen, Z.; Wen, T.; Wang, S.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 325, 576.  doi: 10.1016/j.cej.2017.05.125

    4. [4]

      Pang, H.; Wang, X.; Yao, W.; Yu, S.; Wang, X. Sci. China. Chem. 2018, 48, 58.
       

    5. [5]

      Chen, H.; Chen, Z.; Zhao, G.; Zhang, Z.; Xu, C.; Liu, Y.; Chen, J.; Zhuang, L.; Haya, T.; Wang, X. J. Hazard. Mater. 2018, 347, 67.  doi: 10.1016/j.jhazmat.2017.12.062

    6. [6]

      Chen, H.; Huang, S.; Zhang, Z.; Liu, Y.; Wang, X. Acta Chim. Sinica 2017, 75, 560.  doi: 10.11862/CJIC.2017.075
       

    7. [7]

      Favre-Réguillon, A.; Lebuzit, G.; Murat, D.; Foos, J.; Mansour, C.; Draye, M. Water. Res. 2008, 42, 1160.  doi: 10.1016/j.watres.2007.08.034

    8. [8]

      Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Wang, X. Environ. Pollut. 2018, 240, 493.  doi: 10.1016/j.envpol.2018.04.136

    9. [9]

      Li, J.; Gong, L.; Feng, X.; Zhang, L.; Wu, H.; Yan, C.; Xiong, Y.; Gao, H.; Luo, F. Chem. Eng. J. 2017, 316, 154.  doi: 10.1016/j.cej.2017.01.046

    10. [10]

      Gu, P.; Xing, J.; Wen, T.; Zhang, R.; Wang, J.; Zhao, G.; Hayat, T.; Ai, Y.; Lin, Z.; Wang, X. Environ. Sci. Nano 2018, 5, 946.  doi: 10.1039/C8EN00029H

    11. [11]

      Liang, Y.; Gu, P.; Yao, W.; Yu, S.; Wang, J.; Wang, X. Prog. Chem. 2017, 29, 1062.
       

    12. [12]

      Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Environ. Sci. Technol. 2011, 45, 10454.  doi: 10.1021/es203439v

    13. [13]

      Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Environ. Sci. Technol. 2013, 47, 9904.  doi: 10.1021/es401174n

    14. [14]

      Mashtalir, O.; Naguib, M.; Mochalin, V.; Dall'Agnese, Y.; Heon, M.; Barsoum, M.; Gogotsi, Y. Nat. Commun. 2013, 4, 1716.  doi: 10.1038/ncomms2664

    15. [15]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.
       

    16. [16]

      Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.; Si-mon, P.; Barsoum, M.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61.  doi: 10.1016/j.elecom.2012.01.002

    17. [17]

      Lukatskaya, M.; Mashtalir, O.; Ren, C.; Dall'Agnese, Y.; Rozier, P.; Taberna, P.; Naguib, M.; Simon, P.; Barsoum, M.; Gogotsi, Y. Science 2013, 341, 1502.  doi: 10.1126/science.1241488

    18. [18]

      Ma, T.; Cao, J.; Jaroniec, M.; Qiao, S. Angew. Chem. Int. Ed. 2016, 55, 1138.  doi: 10.1002/anie.201509758

    19. [19]

      Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X. ACS Appl. Mater. Inter. 2015, 7, 1795.  doi: 10.1021/am5074722

    20. [20]

      Fard, A.; McKay, G.; Chamoun, R.; Rhadfi, T.; Preud'Homme, H.; Atieh, M. Chem. Eng. J. 2017, 317, 331.  doi: 10.1016/j.cej.2017.02.090

    21. [21]

      Wang, L.; Yuan, L.; Chen, K.; Zhang, Y.; Deng, Q.; Du, S.; Huang, Q.; Zheng, R.; Zhang, J.; Chai, Z.; Barsoum, M.; Wang, X.; Shi, W. ACS Appl. Mater. Inter. 2016, 8, 16396.  doi: 10.1021/acsami.6b02989

    22. [22]

      Wang, L.; Tao, W.; Yuan, L.; Liu, Z.; Huang, Q.; Chai, Z.; Gibson, J.; Shi, W. Chem. Commun. 2017, 53, 12084.  doi: 10.1039/C7CC06740B

    23. [23]

      Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y. J. Am. Chem. Soc. 2014, 136, 4113.  doi: 10.1021/ja500506k

    24. [24]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. Adv. Mater. 2011, 23, 4248.  doi: 10.1002/adma.201102306

    25. [25]

      Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X. J. Hazard. Mater. 2017, 321, 111.  doi: 10.1016/j.jhazmat.2016.09.009

    26. [26]

      Pang, H.; Huang, S.; Wu, Y.; Yang, D.; Wang, X.; Yu, S.; Chen, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Inorg. Chem. Front. 2018 DOI:10. 1039/C8QI00253C.  doi: 10.1039/C8QI00253C

    27. [27]

      Zhu, K.; Lu, S.; Gao, Y.; Zhang, R.; Tan, X.; Chen, C. Appl. Surf. Sci. 2017, 396, 1726.  doi: 10.1016/j.apsusc.2016.11.230

    28. [28]

      Yao, W.; Wang, X.; Liang, Y.; Yu, S.; Gu, P.; Sun, Y.; Xu, C.; Chen, J.; Hayat, T.; Alsaedi, A.; Wang, X. Chem. Eng. J. 2018, 332, 775.  doi: 10.1016/j.cej.2017.09.011

    29. [29]

      Song, S.; Yin, L.; Wang, X.; Liu, L.; Huang, S.; Zhang, R.; Wen, T.; Yu, S.; Fu, D.; Hayat, T.; Wang, X. Chem. Eng. J. 2018, 338, 579.  doi: 10.1016/j.cej.2018.01.055

    30. [30]

      Yang, S.; Wang, X.; Chen, Z.; Li, Q.; Wei, B.; Wang, X. Prog. Chem. 2018, 30, 225.
       

    31. [31]

      Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.  doi: 10.1021/am4003556

    32. [32]

      Yang, D.; Wang, X.; Wang, N.; Zhao, G.; Song, G.; Chen, D.; Liang, Y.; Wen, T.; Wang, H.; Hayat, T.; Alsaedi, A.; Wang, X.; Wang, S. J. Clean. Prod. 2017, 172, 2033.
       

    33. [33]

      Yu, S.; Wang, J.; Song, S.; Sun, K.; Li, J.; Wang, X.; Chen, Z.; Wang, X. Sci. China. Chem. 2017, 60, 415.  doi: 10.1007/s11426-016-0420-8

    34. [34]

      Ma, S.; Huang, L.; Ma, L.; Shim, Y.; Islam, S.; Wang, P.; Zhao, L.; Wang, S.; Sun, G.; Yang, X.; Kanatzidis, M. J. Am. Chem. Soc. 2015, 137, 3670.  doi: 10.1021/jacs.5b00762

    35. [35]

      Zou, Y.; Wang, P.; Yao, W.; Wang, X.; Liu, Y.; Yang, D.; Wang, L.; Hou, J.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 330, 573.  doi: 10.1016/j.cej.2017.07.135

    36. [36]

      Zhang, C.; Liu, Y.; Li, X.; Chen, H.; Wen, T.; Jiang, Z.; Ai, Y.; Sun, Y.; Hayat, T.; Wang, X. Chem. Eng. J. 2018, 346, 406.  doi: 10.1016/j.cej.2018.03.186

    37. [37]

      Zhou, T.; Li, C.; Jin, H.; Lian, Y.; Han, W. ACS Appl. Mater. Inter. 2017, 9, 6030.  doi: 10.1021/acsami.6b14079

    38. [38]

      Zou, Y.; Wang, X.; Wu, F.; Yu, S.; Hu, Y.; Song, W.; Liu, Y.; Wang, H.; Hayat, T.; Wang, X. ACS Sustain. Chem. Eng. 2016, 5, 1173.

    39. [39]

      Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. ACS Appl. Mater. Inter. 2016, 8, 21011.  doi: 10.1021/acsami.6b06455

    40. [40]

      Shao, D.; Hou, G.; Li, J.; Wen, T.; Ren, X.; Wang, X. Chem. Eng. J. 2014, 255, 604.  doi: 10.1016/j.cej.2014.06.063

    41. [41]

      Franczyk, T.; Czerwinski, K.; Raymond, K. J. Am. Chem. Soc. 1992, 114, 8138.  doi: 10.1021/ja00047a023

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    20. [20]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

Metrics
  • PDF Downloads(25)
  • Abstract views(1926)
  • HTML views(469)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return