Citation: Gu Pengcheng, Song Shuang, Zhang Sai, Wei Benben, Wen Tao, Wang Xiangke. Enrichment of U(Ⅵ) on Polyaniline Modified Mxene Composites Studied by Batch Experiment and Mechanism Investigation[J]. Acta Chimica Sinica, ;2018, 76(9): 701-708. doi: 10.6023/A18060245 shu

Enrichment of U(Ⅵ) on Polyaniline Modified Mxene Composites Studied by Batch Experiment and Mechanism Investigation

  • Corresponding author: Wang Xiangke, xkwang@ncepu.edu.cn
  • Received Date: 24 June 2018
    Available Online: 27 September 2018

    Fund Project: the financial support from the National Key Research and Development Program of China 2017YFA0207002Project supported by the financial support from the National Key Research and Development Program of China (No. 2017YFA0207002), National Natural Science Foundation of China (Nos. 21577032 and 21707033) and the NCEPU "Double First-Class" Graduate Talent Cultivation Program (No. 035/XM1805316)the NCEPU "Double First-Class" Graduate Talent Cultivation Program 035/XM1805316National Natural Science Foundation of China 21707033National Natural Science Foundation of China 21577032

Figures(5)

  • Remediation of nuclear wastewater containing U(Ⅵ) is very important to human health and environmental ecosystems. Recently, numerous kinds of adsorbents such as clay minerals, carbon-based material and layered double hydroxides etc. have been extensively investigated for effective containing U(Ⅵ) wastewater treatment. A representative class of two-dimensional material, "Mxene" has received multidisciplinary interests due to their widespread application in the fields of batteries, supercapacitors and wastewater treatment. Unfortunately, the adsorption capacity of pristine Mxene is frequently limited due to the low quantity of surface functional groups. It was obviously that synthesizing functionalized Mxene materials with plenty functional groups is of great importance for wastewater remediation. In this manuscript, polyaniline modified Mxene composites (PANI/Ti3C2Tx) were successfully synthesized by a in situ polymerization method and were characterized by a series of methods including SEM, FT-IR, XRD and XPS techniques. The adsorption behavior of U(Ⅵ) on PANI/Ti3C2Tx was systematically explored by batch experiment. The experiment results showed that the removal process was obviously affected by the ion strength, indicating the formation of outer-sphere surface complexes. Meanwhile, the thermodynamic results manifested that the adsorption process was spontaneous and endothermic reaction. Based on Langmuir model fit, the maximum adsorption capacity of U(Ⅵ) on polyaniline modified Mxene composites was calculated to be 102.8 mg/g at pH=5.0 and 298 K, which was superior than that of U(Ⅵ) on pristine Ti3C2Tx (36.6 mg/g). In addition, spectroscopy characterizations including Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were applied to study the underlying interaction mechanism, which was mainly attributed to the strong surface complexion between surface functional groups (oxygen-containing groups and amino groups) and U(Ⅵ). This work herein pointed out that PANI/Ti3C2Tx materials were promising adsorbent for the efficient removal of U(Ⅵ) in the environmental pollution remediation.
  • 加载中
    1. [1]

      Ma, L.; Wang, Q.; Islam, S.; Liu, Y.; Ma, S.; Kanatzidis, M. J. Am. Chem. Soc. 2016, 138, 2858.  doi: 10.1021/jacs.6b00110

    2. [2]

      Manos, M.; Kanatzidis, M. J. Am. Chem. Soc. 2012, 134, 16441.  doi: 10.1021/ja308028n

    3. [3]

      Song, S.; Huang, S.; Zhang, R.; Chen, Z.; Wen, T.; Wang, S.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 325, 576.  doi: 10.1016/j.cej.2017.05.125

    4. [4]

      Pang, H.; Wang, X.; Yao, W.; Yu, S.; Wang, X. Sci. China. Chem. 2018, 48, 58.
       

    5. [5]

      Chen, H.; Chen, Z.; Zhao, G.; Zhang, Z.; Xu, C.; Liu, Y.; Chen, J.; Zhuang, L.; Haya, T.; Wang, X. J. Hazard. Mater. 2018, 347, 67.  doi: 10.1016/j.jhazmat.2017.12.062

    6. [6]

      Chen, H.; Huang, S.; Zhang, Z.; Liu, Y.; Wang, X. Acta Chim. Sinica 2017, 75, 560.  doi: 10.11862/CJIC.2017.075
       

    7. [7]

      Favre-Réguillon, A.; Lebuzit, G.; Murat, D.; Foos, J.; Mansour, C.; Draye, M. Water. Res. 2008, 42, 1160.  doi: 10.1016/j.watres.2007.08.034

    8. [8]

      Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Wang, X. Environ. Pollut. 2018, 240, 493.  doi: 10.1016/j.envpol.2018.04.136

    9. [9]

      Li, J.; Gong, L.; Feng, X.; Zhang, L.; Wu, H.; Yan, C.; Xiong, Y.; Gao, H.; Luo, F. Chem. Eng. J. 2017, 316, 154.  doi: 10.1016/j.cej.2017.01.046

    10. [10]

      Gu, P.; Xing, J.; Wen, T.; Zhang, R.; Wang, J.; Zhao, G.; Hayat, T.; Ai, Y.; Lin, Z.; Wang, X. Environ. Sci. Nano 2018, 5, 946.  doi: 10.1039/C8EN00029H

    11. [11]

      Liang, Y.; Gu, P.; Yao, W.; Yu, S.; Wang, J.; Wang, X. Prog. Chem. 2017, 29, 1062.
       

    12. [12]

      Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Environ. Sci. Technol. 2011, 45, 10454.  doi: 10.1021/es203439v

    13. [13]

      Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Environ. Sci. Technol. 2013, 47, 9904.  doi: 10.1021/es401174n

    14. [14]

      Mashtalir, O.; Naguib, M.; Mochalin, V.; Dall'Agnese, Y.; Heon, M.; Barsoum, M.; Gogotsi, Y. Nat. Commun. 2013, 4, 1716.  doi: 10.1038/ncomms2664

    15. [15]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.
       

    16. [16]

      Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.; Si-mon, P.; Barsoum, M.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61.  doi: 10.1016/j.elecom.2012.01.002

    17. [17]

      Lukatskaya, M.; Mashtalir, O.; Ren, C.; Dall'Agnese, Y.; Rozier, P.; Taberna, P.; Naguib, M.; Simon, P.; Barsoum, M.; Gogotsi, Y. Science 2013, 341, 1502.  doi: 10.1126/science.1241488

    18. [18]

      Ma, T.; Cao, J.; Jaroniec, M.; Qiao, S. Angew. Chem. Int. Ed. 2016, 55, 1138.  doi: 10.1002/anie.201509758

    19. [19]

      Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X. ACS Appl. Mater. Inter. 2015, 7, 1795.  doi: 10.1021/am5074722

    20. [20]

      Fard, A.; McKay, G.; Chamoun, R.; Rhadfi, T.; Preud'Homme, H.; Atieh, M. Chem. Eng. J. 2017, 317, 331.  doi: 10.1016/j.cej.2017.02.090

    21. [21]

      Wang, L.; Yuan, L.; Chen, K.; Zhang, Y.; Deng, Q.; Du, S.; Huang, Q.; Zheng, R.; Zhang, J.; Chai, Z.; Barsoum, M.; Wang, X.; Shi, W. ACS Appl. Mater. Inter. 2016, 8, 16396.  doi: 10.1021/acsami.6b02989

    22. [22]

      Wang, L.; Tao, W.; Yuan, L.; Liu, Z.; Huang, Q.; Chai, Z.; Gibson, J.; Shi, W. Chem. Commun. 2017, 53, 12084.  doi: 10.1039/C7CC06740B

    23. [23]

      Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y. J. Am. Chem. Soc. 2014, 136, 4113.  doi: 10.1021/ja500506k

    24. [24]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. Adv. Mater. 2011, 23, 4248.  doi: 10.1002/adma.201102306

    25. [25]

      Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X. J. Hazard. Mater. 2017, 321, 111.  doi: 10.1016/j.jhazmat.2016.09.009

    26. [26]

      Pang, H.; Huang, S.; Wu, Y.; Yang, D.; Wang, X.; Yu, S.; Chen, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Inorg. Chem. Front. 2018 DOI:10. 1039/C8QI00253C.  doi: 10.1039/C8QI00253C

    27. [27]

      Zhu, K.; Lu, S.; Gao, Y.; Zhang, R.; Tan, X.; Chen, C. Appl. Surf. Sci. 2017, 396, 1726.  doi: 10.1016/j.apsusc.2016.11.230

    28. [28]

      Yao, W.; Wang, X.; Liang, Y.; Yu, S.; Gu, P.; Sun, Y.; Xu, C.; Chen, J.; Hayat, T.; Alsaedi, A.; Wang, X. Chem. Eng. J. 2018, 332, 775.  doi: 10.1016/j.cej.2017.09.011

    29. [29]

      Song, S.; Yin, L.; Wang, X.; Liu, L.; Huang, S.; Zhang, R.; Wen, T.; Yu, S.; Fu, D.; Hayat, T.; Wang, X. Chem. Eng. J. 2018, 338, 579.  doi: 10.1016/j.cej.2018.01.055

    30. [30]

      Yang, S.; Wang, X.; Chen, Z.; Li, Q.; Wei, B.; Wang, X. Prog. Chem. 2018, 30, 225.
       

    31. [31]

      Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.  doi: 10.1021/am4003556

    32. [32]

      Yang, D.; Wang, X.; Wang, N.; Zhao, G.; Song, G.; Chen, D.; Liang, Y.; Wen, T.; Wang, H.; Hayat, T.; Alsaedi, A.; Wang, X.; Wang, S. J. Clean. Prod. 2017, 172, 2033.
       

    33. [33]

      Yu, S.; Wang, J.; Song, S.; Sun, K.; Li, J.; Wang, X.; Chen, Z.; Wang, X. Sci. China. Chem. 2017, 60, 415.  doi: 10.1007/s11426-016-0420-8

    34. [34]

      Ma, S.; Huang, L.; Ma, L.; Shim, Y.; Islam, S.; Wang, P.; Zhao, L.; Wang, S.; Sun, G.; Yang, X.; Kanatzidis, M. J. Am. Chem. Soc. 2015, 137, 3670.  doi: 10.1021/jacs.5b00762

    35. [35]

      Zou, Y.; Wang, P.; Yao, W.; Wang, X.; Liu, Y.; Yang, D.; Wang, L.; Hou, J.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 330, 573.  doi: 10.1016/j.cej.2017.07.135

    36. [36]

      Zhang, C.; Liu, Y.; Li, X.; Chen, H.; Wen, T.; Jiang, Z.; Ai, Y.; Sun, Y.; Hayat, T.; Wang, X. Chem. Eng. J. 2018, 346, 406.  doi: 10.1016/j.cej.2018.03.186

    37. [37]

      Zhou, T.; Li, C.; Jin, H.; Lian, Y.; Han, W. ACS Appl. Mater. Inter. 2017, 9, 6030.  doi: 10.1021/acsami.6b14079

    38. [38]

      Zou, Y.; Wang, X.; Wu, F.; Yu, S.; Hu, Y.; Song, W.; Liu, Y.; Wang, H.; Hayat, T.; Wang, X. ACS Sustain. Chem. Eng. 2016, 5, 1173.

    39. [39]

      Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. ACS Appl. Mater. Inter. 2016, 8, 21011.  doi: 10.1021/acsami.6b06455

    40. [40]

      Shao, D.; Hou, G.; Li, J.; Wen, T.; Ren, X.; Wang, X. Chem. Eng. J. 2014, 255, 604.  doi: 10.1016/j.cej.2014.06.063

    41. [41]

      Franczyk, T.; Czerwinski, K.; Raymond, K. J. Am. Chem. Soc. 1992, 114, 8138.  doi: 10.1021/ja00047a023

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    9. [9]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    16. [16]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(26)
  • Abstract views(2030)
  • HTML views(495)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return