Citation: Wang Leming, Wang Qian, Chen Jiean, Huang Yong. Switching Reaction Pathways by Cooperative Catalysis of N-Heterocyclic Carbene and Lewis Acids[J]. Acta Chimica Sinica, ;2018, 76(11): 850-856. doi: 10.6023/A18060244 shu

Switching Reaction Pathways by Cooperative Catalysis of N-Heterocyclic Carbene and Lewis Acids

  • Corresponding author: Chen Jiean, chenja@pkusz.edu Huang Yong, huangyong@pkusz.edu.cn
  • Received Date: 23 June 2018
    Available Online: 17 November 2018

    Fund Project: the National Natural Science Foundation of China 21572004Shenzhen Basic Research Program JCYJ20170818085510474Shenzhen Basic Research Program JCYJ20170818085438996the National Natural Science Foundation of China 21602007Project supported by the National Natural Science Foundation of China (Nos. 21602007, 21572004), Guangdong Science and Technology Program (No. 2013B090500009) and Shenzhen Basic Research Program (Nos. JCYJ20170818085510474, JCYJ20170818085438996)Guangdong Science and Technology Program 2013B090500009

Figures(3)

  • The combination of N-heterocyclic carbenes (NHCs) and Lewis acids (LA) have been occasionally employed in asymmetric annulation reactions. However, synergistic effect of LA on NHC-mediated reactions remains scarce. Herein, we demonstrate that by switching LA co-catalysts, two distinct active species, homoenolate and acyl azolium, can be accessed from the same set of substrates. NHC-catalyzed enantioselective hydroesterification is one of the most straightforward strategies to prepare β-chiral esters. Despite recent advances for this redox-neutral transformation, obtaining high enantioselectivity and yield remains challenging. We recently reported synergistic catalysis, combining an achiral NHC and a chiral phosphoric acid, enables highly enantioselective hydrothioesterification and hydroesterification of enals. However, both stereoselectivity and yield for hydroesterification are far from ideal. Specifically, sluggish reactions, accompanied with ee's in mid-80% are often obtained. Additionally, competing pathways for E/Z isomerization and oxidative esterification of enal are serious for a number of substrates. In order to address this issue, we propose a new cooperative catalytic system, consisting of a NHC, a LA and a proton-shuttling agent, might accelerate the pivotal asymmetric β-protonation process. We suspect that the choice of LA might provide complementary reaction pathways from the same enal substrates. Starting from β-alkyl cinnamaldehydes, highly enantioselective hydroesterification is accomplished via asymmetric β-protonation enabled by a magnesium co-catalyst. In sharp contrast, the same homoenolate intermediate can undergo aerobic oxidation, via single electron transfer (SET), in the presence of a ruthenium co-catalyst. Control experiments show distinct rate difference between the E-and Z-isomers of enal. Substrates with Z-configuration react significantly slower under the standard reactions. E/Z isomerization is also slow. Photoirradiation was applied to address the challenging issue of isomeric enals and both high yield and ee are obtained using start materials as E/Z mixtures. General procedure for the asymmetric β-protonation is as following:NHC pre-catalyst (0.01 mmol), MgCl2 (0.01 mmol), DABCO (0.12 mmol), 4 Å MS (100 mg), alcohol (0.6 mmol) and enal substrate (0.1 mmol) were dissolved in toluene (1.0 mL). The resulted mixture was stirred at room temperature under Ar atmosphere for 15 h. Upon complete consumption of the enal, the mixture was concentrated and purified by flash column chromatography. For the aerobic oxidation, the reaction proceeded with RuCl3 (0.01 mmol) under O2 atmosphere.
  • 加载中
    1. [1]

      (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745; (b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999; (c) Allen, A. E.; Macmillan, D. W. Chem. Sci. 2012, 3, 633; (d) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.

    2. [2]

      (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606; (b) Chiang, P.-C.; Bode, J. W. TCI MAIL 2011, 149, 2; (c) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336; (d) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511; (e) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314; (f) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485; (g) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696; (h) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307; (i) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583.

    3. [3]

    4. [4]

      (a) Dugal-Tessier, J.; O'Bryan, E. A.; Schroeder, T. B.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 4963; (b) Raup, D. E.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766; (c) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53; (d) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810; (e) Wang, M.; Rong, Z. Q.; Zhao, Y. Chem. Commun. 2014, 50, 15309; (f) Reddi, Y.; Sunoj, R. B. ACS Catal. 2017, 7, 530.

    5. [5]

      Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.  doi: 10.1021/ja01547a064

    6. [6]

      (a) Maki, B. E.; Chan, A.; Scheidt, K. A. Synthesis 2008, 1306; (b) Maki, B. E.; Patterson, E. V.; Cramer, C. J.; Scheidt, K. A. Org. Lett. 2009, 11, 3942; (c) Wang, M. H.; Barsoum, D.; Schwamb, C. B.; Cohen, D. T.; Goess, B. C.; Riedrich, M.; Chan, A.; Maki, B. E.; Mishra, R. K.; Scheidt, K. A. J. Org. Chem. 2017, 82, 4689.

    7. [7]

      (a) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612; (b) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151; (c) Janssen-Muller, D.; Schlepphorst, C.; Glorius, F. Chem. Soc. Rev. 2017, 46, 4845.

    8. [8]

      Wang, M. H.; Cohen, D. T.; Schwamb, C. B.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2015, 137, 5891.  doi: 10.1021/jacs.5b02887

    9. [9]

      (a) Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045; (b) Zhang, L.; Yuan, P.; Chen, J.; Huang, Y. Chem. Commun. 2018, 54, 1473; (c) Yuan, P.; Chen, J.; Zhao, J.; Huang, Y. Angew. Chem., Int. Ed. 2018. DOI: 10.1002/anie.201803556.

    10. [10]

      Zhao, J.; Mück-Lichtenfeld, C.; Studer, A. Adv. Synth. Catal. 2013, 355, 1098.  doi: 10.1002/adsc.v355.6

    11. [11]

      (a) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312; (b) North, M. Angew. Chem., Int. Ed. 2004, 43, 4126; (c) Murahashi, S.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931; (d) Murahashi, S.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.

    12. [12]

      (a) White, N. A.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 14674; (b) Zhang, Y.; Du, Y.; Huang, Z.; Xu, J.; Wu, X.; Wang, Y.; Wang, M.; Yang, S.; Webster, R. D.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 2416; (c) Yang, W.; Hu, W.; Dong, X.; Li, X.; Sun, J. Angew. Chem., Int. Ed. 2016, 55, 15783.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(15)
  • Abstract views(1721)
  • HTML views(748)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return