Citation: Wang Leming, Wang Qian, Chen Jiean, Huang Yong. Switching Reaction Pathways by Cooperative Catalysis of N-Heterocyclic Carbene and Lewis Acids[J]. Acta Chimica Sinica, ;2018, 76(11): 850-856. doi: 10.6023/A18060244 shu

Switching Reaction Pathways by Cooperative Catalysis of N-Heterocyclic Carbene and Lewis Acids

  • Corresponding author: Chen Jiean, chenja@pkusz.edu Huang Yong, huangyong@pkusz.edu.cn
  • Received Date: 23 June 2018
    Available Online: 17 November 2018

    Fund Project: the National Natural Science Foundation of China 21572004Shenzhen Basic Research Program JCYJ20170818085510474Shenzhen Basic Research Program JCYJ20170818085438996the National Natural Science Foundation of China 21602007Project supported by the National Natural Science Foundation of China (Nos. 21602007, 21572004), Guangdong Science and Technology Program (No. 2013B090500009) and Shenzhen Basic Research Program (Nos. JCYJ20170818085510474, JCYJ20170818085438996)Guangdong Science and Technology Program 2013B090500009

Figures(3)

  • The combination of N-heterocyclic carbenes (NHCs) and Lewis acids (LA) have been occasionally employed in asymmetric annulation reactions. However, synergistic effect of LA on NHC-mediated reactions remains scarce. Herein, we demonstrate that by switching LA co-catalysts, two distinct active species, homoenolate and acyl azolium, can be accessed from the same set of substrates. NHC-catalyzed enantioselective hydroesterification is one of the most straightforward strategies to prepare β-chiral esters. Despite recent advances for this redox-neutral transformation, obtaining high enantioselectivity and yield remains challenging. We recently reported synergistic catalysis, combining an achiral NHC and a chiral phosphoric acid, enables highly enantioselective hydrothioesterification and hydroesterification of enals. However, both stereoselectivity and yield for hydroesterification are far from ideal. Specifically, sluggish reactions, accompanied with ee's in mid-80% are often obtained. Additionally, competing pathways for E/Z isomerization and oxidative esterification of enal are serious for a number of substrates. In order to address this issue, we propose a new cooperative catalytic system, consisting of a NHC, a LA and a proton-shuttling agent, might accelerate the pivotal asymmetric β-protonation process. We suspect that the choice of LA might provide complementary reaction pathways from the same enal substrates. Starting from β-alkyl cinnamaldehydes, highly enantioselective hydroesterification is accomplished via asymmetric β-protonation enabled by a magnesium co-catalyst. In sharp contrast, the same homoenolate intermediate can undergo aerobic oxidation, via single electron transfer (SET), in the presence of a ruthenium co-catalyst. Control experiments show distinct rate difference between the E-and Z-isomers of enal. Substrates with Z-configuration react significantly slower under the standard reactions. E/Z isomerization is also slow. Photoirradiation was applied to address the challenging issue of isomeric enals and both high yield and ee are obtained using start materials as E/Z mixtures. General procedure for the asymmetric β-protonation is as following:NHC pre-catalyst (0.01 mmol), MgCl2 (0.01 mmol), DABCO (0.12 mmol), 4 Å MS (100 mg), alcohol (0.6 mmol) and enal substrate (0.1 mmol) were dissolved in toluene (1.0 mL). The resulted mixture was stirred at room temperature under Ar atmosphere for 15 h. Upon complete consumption of the enal, the mixture was concentrated and purified by flash column chromatography. For the aerobic oxidation, the reaction proceeded with RuCl3 (0.01 mmol) under O2 atmosphere.
  • 加载中
    1. [1]

      (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745; (b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999; (c) Allen, A. E.; Macmillan, D. W. Chem. Sci. 2012, 3, 633; (d) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.

    2. [2]

      (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606; (b) Chiang, P.-C.; Bode, J. W. TCI MAIL 2011, 149, 2; (c) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336; (d) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511; (e) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314; (f) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485; (g) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696; (h) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307; (i) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583.

    3. [3]

    4. [4]

      (a) Dugal-Tessier, J.; O'Bryan, E. A.; Schroeder, T. B.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 4963; (b) Raup, D. E.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766; (c) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53; (d) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810; (e) Wang, M.; Rong, Z. Q.; Zhao, Y. Chem. Commun. 2014, 50, 15309; (f) Reddi, Y.; Sunoj, R. B. ACS Catal. 2017, 7, 530.

    5. [5]

      Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.  doi: 10.1021/ja01547a064

    6. [6]

      (a) Maki, B. E.; Chan, A.; Scheidt, K. A. Synthesis 2008, 1306; (b) Maki, B. E.; Patterson, E. V.; Cramer, C. J.; Scheidt, K. A. Org. Lett. 2009, 11, 3942; (c) Wang, M. H.; Barsoum, D.; Schwamb, C. B.; Cohen, D. T.; Goess, B. C.; Riedrich, M.; Chan, A.; Maki, B. E.; Mishra, R. K.; Scheidt, K. A. J. Org. Chem. 2017, 82, 4689.

    7. [7]

      (a) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612; (b) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151; (c) Janssen-Muller, D.; Schlepphorst, C.; Glorius, F. Chem. Soc. Rev. 2017, 46, 4845.

    8. [8]

      Wang, M. H.; Cohen, D. T.; Schwamb, C. B.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2015, 137, 5891.  doi: 10.1021/jacs.5b02887

    9. [9]

      (a) Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045; (b) Zhang, L.; Yuan, P.; Chen, J.; Huang, Y. Chem. Commun. 2018, 54, 1473; (c) Yuan, P.; Chen, J.; Zhao, J.; Huang, Y. Angew. Chem., Int. Ed. 2018. DOI: 10.1002/anie.201803556.

    10. [10]

      Zhao, J.; Mück-Lichtenfeld, C.; Studer, A. Adv. Synth. Catal. 2013, 355, 1098.  doi: 10.1002/adsc.v355.6

    11. [11]

      (a) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312; (b) North, M. Angew. Chem., Int. Ed. 2004, 43, 4126; (c) Murahashi, S.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931; (d) Murahashi, S.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.

    12. [12]

      (a) White, N. A.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 14674; (b) Zhang, Y.; Du, Y.; Huang, Z.; Xu, J.; Wu, X.; Wang, Y.; Wang, M.; Yang, S.; Webster, R. D.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 2416; (c) Yang, W.; Hu, W.; Dong, X.; Li, X.; Sun, J. Angew. Chem., Int. Ed. 2016, 55, 15783.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    18. [18]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(17)
  • Abstract views(2027)
  • HTML views(890)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return