Citation: Liao Fumin, Du Yi, Zhou Feng, Zhou Jian. Au(I)/Chiral Tertiary Amine Catalyzed Tandem Olefination/Asymmetric Cyclization Reaction to Quaternary Spirocyclic Oxindoles[J]. Acta Chimica Sinica, ;2018, 76(11): 862-868. doi: 10.6023/A18060238 shu

Au(I)/Chiral Tertiary Amine Catalyzed Tandem Olefination/Asymmetric Cyclization Reaction to Quaternary Spirocyclic Oxindoles

  • Corresponding author: Zhou Jian, jzhou@chem.ecnu.edu.cn
  • These authors contributed equally to this work.
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.
  • Received Date: 18 June 2018
    Available Online: 21 November 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21472049)the National Natural Science Foundation of China 21472049

Figures(2)

  • We report an asymmetric tandem reaction realized by sequential Au(I)/chiral bifunctional tertiary amine catalysis. A tandem olefination/asymmetric cyclization reaction is developed, allowing facile synthesis of quaternary spirocyclic oxindoles in good yields and stereoselectivities from N-Ac protected diazooxindoles 1, monofluorinated enol silyl ethers 2 and 2-tosylaminochalcone 4. The initial cross coupling reaction of diazooxindole and fluorinated enol silyl ethers, catalyzed by 3.0 mol% IPrAuBF4, readily afforded 3-alkenyloxindoles for the subsequent Michael/Michael addition of 2-tosylaminochalcone catalyzed by 5.0~10.0 mol% chiral bifunctional tertiary amine-squaramide C1. The tandem reaction was performed by the following general procedure. Under an atmosphere of N2, to an oven-dried Schlenk tube were added IPrAuCl (6.0 mg, 0.0099 mmol, 3.3 mol%) and AgBF4 (1.8 mg, 0.0090 mmol, 3.0 mol%), followed by anhydrous CH2Cl2 (1.0 mL). The resulting mixture was stirred at 25℃ for 0.5 h and then cooled down to 0℃. After ethers 2 (1.5 equiv.) was added in one-portion, a solution of diazooxindoles 1 in 1.5 mL of CH2Cl2 was added slowly by a syringe pump in 20 minutes. The reaction was stirred at 0℃ till full consumption of 1 by TLC analysis. After the successive addition of C1 and 4 (1.1 equiv.), the reaction was warmed to 25℃ and stirred till full consumption of 3, and the mixture was directly subjected to the column chromatography by using petroleum ether/dichloromethane (1/2.5, V/V) as the eluent to give the desired spirocyclic oxindoles 5. The diastereoselectivities of 5 (>20:1) were determined by 1H NMR analysis of the crude reaction mixture. The key step of this tandem sequence is the cross coupling reaction of monofluorinated enol silyl ethers and donor-acceptor diazo reagents. We further examined the substrates scope of acyclic aryl diazoacetates and fluorinated enol silyl ethers by using 1.0 mol% IPrAuSbF6 as catalyst, providing a new method for the efficient synthesis of trisubstituted alkenes.
  • 加载中
    1. [1]

      Zhou, J. Multicatalyst system in asymmetric catalysis, John Wiley & Sons, New York, 2014.

    2. [2]

      For reviews: (a) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999. (b) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.

    3. [3]

      (a) Park, Y. J.; Park, J. -W.; Jun, C. -H. Acc. Chem. Res. 2008, 41, 222. For selected examples: (b) Longmire, J.; Wang, B.; Zhang, X. -M. J. Am. Chem. Soc. 2002, 124, 13400. (c) Yan, X. -X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X. -L.; Wu, Y. -D. Angew. Chem., Int. Ed. 2006, 45, 1979. (d) Yan, X. -X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X. -L.; Wu, Y. -D. J. Am. Chem. Soc. 2008, 130, 14362. (e) Xu, H.; Zuend, S. J.; Woll, M. J.; Tao, Y.; Jacobsen, E. N. Science 2010, 327, 986.

    4. [4]

      (a) Long, J.; Ding, K. Angew. Chem., Int. Ed. 2001, 40, 544. (b) Zhou, J.; Wakchaure, V.; Kraft, P.; List, B. Angew. Chem., Int. Ed. 2008, 47, 7656. (c) Lv, J.; Li, X.; Zhong, L.; Luo, S.; Cheng, J. -P. Org. Lett. 2010, 12, 1096. (d) Lv, J.; Zhang, L.; Zhou, Y.; Nie, Z.; Luo, S.; Cheng, J. -P. Angew. Chem., Int. Ed. 2011, 50, 6610. (e) Zeng, X. -P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730.

    5. [5]

      (a) Zhou, J. Chem. Asian J. 2010, 5, 422. (b) Patil, N. T.; Shinde, V. S.; Gajula, B. Org. Biomol. Chem. 2012, 10, 211. (c) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337. (d) Pellissier, H. Tetrahedron 2013, 69, 7171. (e) Chen, D. -F.; Han, Z. -Y.; Zhou, X. -L.; Gong, L. -Z. Acc. Chem. Res. 2014, 47, 2365.

    6. [6]

      Chen, G. -S.; Deng, Y. -J.; Gong, L. -Z.; Mi, A. -Q.; Cui, X.; Jiang, Y. -Z.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567.  doi: 10.1016/S0957-4166(01)00276-2

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      (a) Liu, X.; Lin, L.; Feng, X. Acc. Chem. Res. 2011, 44, 574. (b) Chen, F.; Feng, X.; Qin, B.; Zhang, G.; Jiang, Y. Org. Lett. 2003, 5, 949. (c) Li, Y.; He, B.; Qin, B.; Feng, X.; Zhang, G. J. Org. Chem. 2004, 69, 7910. (d) Wen, Y.; Huang, X.; Huang, J.; Xiong, Y.; Qin, B.; Feng, X. Synlett 2005, 2445. (e) Liu, Y.; Liu, X.; Xin, J.; Feng, X. Synlett 2006, 1085. (f) Xiong, Y.; Huang, X.; Gou, S.; Huang, J.; Wen, Y.; Feng, X. Adv. Synth. Catal. 2006, 348, 538. (g) Wang, J.; Hu, X.; Jiang, J.; Gou, S.; Huang, X.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2007, 46, 8468. (h) Shen, K.; Liu, X.; Li, Q.; Feng, X. Tetrahedron 2008, 64, 147.

    12. [12]

      Wang, X.; Guo, P.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2014, 136, 405.  doi: 10.1021/ja410707q

    13. [13]

      (a) Cai, Q.; Zhao, Z. -A.; You, S. -L. Angew. Chem., Int. Ed. 2009, 48, 7428. (b) Cai, Q.; Zheng, C.; You, S. -L. Angew. Chem., Int. Ed. 2010, 49, 8666. (c) Chen, Q. -A.; Wang, D. -S.; Zhou, Y. -G.; Duan, Y.; Fan, H. -J.; Yang, Y.; Zhang, Z. J. Am. Chem. Soc. 2011, 133, 6126. (d) Chen, Q. -A.; Chen, M. -W.; Yu, C. -B.; Shi, L.; Wang, D. -S.; Yang, Y.; Zhou, Y. -G. J. Am. Chem. Soc. 2011, 133, 16432. (e) Chen, Q. -A.; Gao, K.; Duan, Y.; Ye, Z. -S.; Shi, L.; Yang, Y.; Zhou, Y. -G. J. Am. Chem. Soc. 2012, 134, 2442. (f) Lv, J.; Zhang, L.; Hu, S.; Cheng, J. -P.; Luo, S. Chem. Eur. J. 2012, 18, 799. (g) Chen, L.; Zhang, L.; Lv, J.; Cheng, J. -P.; Luo, S. Chem. Eur. J. 2012, 18, 8891. (h) Lv, J.; Zhang, L.; Luo, S.; Cheng, J. -P. Angew. Chem., Int. Ed. 2013, 52, 9786. (i) Lu, L.; Chen, J. -R.; Xiao, W. -J. Acc. Chem. Res. 2012, 45, 1278.

    14. [14]

      (a) Vaxelaire, C.; Winter, P.; Christmann, M. Angew. Chem., Int. Ed. 2011, 50, 3605. (b) Sharma, I.; Tan, D. S. Nat. Chem. 2013, 5, 157.

    15. [15]

      (a) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577. (b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. (c) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (d) Liu, L. Zhang, J. Chem. Soc. Rev. 2016, 45, 506. (e) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810. For some recent examples of Au(I) catalysis on release diazo reagents, see: (f) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 5714. (g) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 11070. (h) Zhu, C.; Xu, G.; Liu, K.; Qiu, L.; Peng, S.; Sun, J. Chem. Commun. 2015, 51, 12768. (i) Zhu, C.; Xu, G.; Ding, D.; Qiu, L.; Sun, J. Org. Lett. 2015, 17, 4244. (j) Hu, M.; Ni, C.; Li, L.; Han, Y.; Hu, J. J. Am. Chem. Soc. 2015, 137, 14496. (k) Zhang, Z.; Yu, W.; Wu, C.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2016, 55, 273.

    16. [16]

      (a) Hu, W.; Xu, X. -F.; Zhou, J.; Liu, W. -J.; Huang, H. -X.; Hu, J.; Yang, L. -P.; Gong, L. -Z. J. Am. Chem. Soc. 2008, 130, 7782. For review: (b) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427. For selected examples: (c) Terada, M.; Toda, Y. Angew. Chem., Int. Ed. 2012, 51, 2093. (d) Qiu, H.; Li, M.; Jiang, L. -Q.; Lv, F. -P.; Zan, L.; Zhai, C. -W.; Doyle, M. P.; Hu, W. -H. Nat. Chem. 2012, 4, 733. (e) Zhang, D.; Qiu, H.; Jiang, L.; Lv, F.; Ma, C.; Hu, W. Angew. Chem., Int. Ed. 2013, 52, 13356. (f) Jia, S.; Xing, D.; Zhang, D.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098. (g) Jing, C.; Dong, X.; Hu, W. Org. Lett. 2015, 17, 4336.

    17. [17]

      (a) Chen, D. -F.; Wu, P. -Y.; Gong, L. -Z. Org. Lett. 2013, 15, 3958. (b) Saito, H.; Iwai, R.; Uchiyama, T.; Miyake, M.; Miyairi, S. Chem. Pharm. Bull. 2010, 58, 872.

    18. [18]

      Li, M.; Guo, X.; Jin, W.; Zheng, Q.; Liu, S.; Hu, W. Chem. Commun. 2016, 52, 2736.  doi: 10.1039/C5CC09918H

    19. [19]

      (a) Zhou, F.; Liu, Y. -L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381. (b) Shen, K.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 327. (c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247. (d) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023. (e) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas Ⅲ, C. F. ACS Catal. 2014, 4, 743.

    20. [20]

      (a) Cao, Z. -Y.; Wang, Y. -H.; Zeng, X. -P.; Zhou, J. Tetrahedron Lett. 2014, 55, 2571. For selected examples, see: (b) Mei, L. -Y.; Tang, X. -Y.; Shi, M. Chem. Eur. J. 2014, 20, 13136. (c) Wu, M. -Y.; He, W. -W.; Liu, X. -Y.; Tan, B. Angew. Chem., Int. Ed. 2015, 54, 9409.

    21. [21]

      (a) Cao, Z. -Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 51, 1443. For selected examples, see: (b) Liu, Y. -L.; Wang, B. -L.; Cao, J. -J.; Chen, L.; Zhang, Y. -X.; Wang, C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176. (c) Ding, M.; Zhou, F.; Liu, Y. -L.; Wang, C. -H.; Zhao, X. -L.; Zhou, J. Chem. Sci. 2011, 2, 2035. (d) Zhou, F.; Tan, C.; Tang, J.; Zhang, Y. -Y.; Gao, W. -M.; Wu, H. -H.; Yu, Y. -H.; Zhou, J. J. Am. Chem. Soc. 2013, 135, 10994. (e) Liu, Y. -L.; Wang, X.; Zhao, Y. -L.; Zhu, F.; Zeng, X. -P.; Chen, L.; Wang, C. -H.; Zhao, X. -L.; Zhou, J. Angew. Chem., Int. Ed. 2013, 52, 13735. (f) Yu, J. -S.; Liao, F. -M.; Gao, W. -M.; Liao, K.; Zuo, R. -L.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 7381. (g) Xu, P. -W.; Liu, J. -K.; Shen, L.; Cao, Z. -Y.; Zhao, X. -L.; Yan, J.; Zhou, J. Nat. Commun. 2017, 8, 1619.

    22. [22]

      (a) Cao, Z. -Y.; Zhou, F.; Yu, Y. -H.; Zhou, J. Org. Lett. 2013, 15, 42. (b) Cao, Z. -Y.; Wang, X.; Tan, C.; Zhao, X. -L.; Zhou, J.; Ding, K. J. Am. Chem. Soc. 2013, 135, 8197.

    23. [23]

      (a) Ren, L.; Lian, X. -L.; Gong, L. -Z. Chem. Eur. J. 2013, 19, 3315. (b) Chen, D. -F.; Zhao, F.; Hu, Y.; Gong, L. -Z. Angew. Chem., Int. Ed. 2014, 53, 10763. (c) Chen, D. -F.; Zhang, C. -L.; Hu, Y.; Han, Z. -Y.; Gong, L. -Z. Org. Chem. Front. 2015, 2, 956.

    24. [24]

      (a) Cao, J. -J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49, 4976. (b) Zeng, X. -P.; Cao, Z. -Y.; Wang, X.; Chen, L.; Zhou, F.; Zhu, F.; Wang, C. -H.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 416.

    25. [25]

      Yin, X. -P.; Zeng, X. -P.; Liu, Y. -L.; Liao, F. -M.; Yu, J. -S.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 13740.  doi: 10.1002/anie.201407677

    26. [26]

      (a) Cao, Z. -Y.; Zhao, Y. -L.; Zhou, J. Chem. Commun. 2016, 52, 2537. (b) Zhao, Y. -L.; Cao, Z. -Y.; Zeng, X. -P.; Shi, J. -M.; Yu, Y. -H.; Zhou, J. Chem. Commun. 2016, 52, 3943.

    27. [27]

      Liao, F. -M.; Cao, Z. -Y.; Yu, J. -S.; Zhou, J. Angew. Chem., Int. Ed. 2017, 56, 2459.  doi: 10.1002/anie.201611625

    28. [28]

      For selected examples: (a) Chen, X. -H.; Wei, Q.; Luo, S. -W.; Xiao, H.; Gong, L. -Z. J. Am. Chem. Soc. 2009, 131, 13819. (b) Bencivenni, G.; Wu, L. -Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M. -P.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7200. (c) Jiang, K.; Jia, Z. -J.; Chen, S.; Wu, L.; Chen, Y. -C. Chem. Eur. J. 2010, 16, 2852. (d) Tan, B.; Hernández-Torres, G.; Barbas Ⅲ, C. -F. J. Am. Chem. Soc. 2011, 133, 12354. (e) Yang, W.; Du, D. -M. Chem. Commun. 201349, 8842. (f) Zheng, H.; He, P.; Liu, Y.; Zhang, Y.; Liu, X.; Lin, L.; Feng, X. Chem. Commun. 201450, 8794. (g) Wang, Y.; Tu, M. -S.; Yin, L.; Sun, M.; Shi, F. J. Org. Chem. 2015, 80, 3223. (h) Zhu, S.; Xu, L.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229 (in Chinese). (朱帅, 徐鲁斌, 王亮, 肖建, 有机化学, 2016, 36, 1229.)

    29. [29]

      (a) Mori, M. Eur. J. Org. Chem. 2007, 4981. (b) Negishi, E. -I.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41, 1474. (c) Negishi, E. -I.; Wang, G.; Rao, H.; Xu, Z. J. Org. Chem. 2010, 75, 3151. (d) Manikandan, R.; Jeganmohan, M. Org. Biomol. Chem. 2015, 13, 10420. (e) Liao, F.; Yu, J.; Zhou, J. Chin. J. Org. Chem. 2017, 37, 2175 (in Chinese). (廖富民, 余金生, 周剑, 有机化学, 2017, 37, 2175.)

    30. [30]

      For our efforts in selective fluoroalkylation using fluorinated enol silyl ethers, see ref. 27 and (a) Liu, Y. -L.; Zhou, J. Chem. Commun. 2012, 48, 1919. (b) Liu, Y. -L.; Liao, F. -M.; Niu, Y. -F.; Zhao, X. -L.; Zhou, J. Org. Chem. Front. 2014, 1, 742. (c) Liu, Y. -L.; Zhou, J. Acta Chim. Sinica 2012, 70, 1451 (in Chinese). (刘运林, 周剑, 化学学报, 2012, 70, 1451.) (d) Yu, J. -S.; Liu, Y. -L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem. Int. Ed. 2014, 53, 9512. (e) Liao, F. -M.; Liu, Y. -L.; Yu, J. -S.; Zhou, F.; Zhou, J. Org. Biomol. Chem. 2015, 13, 8906. (f) Yu, J. -S.; Zhou, J. Org. Biomol. Chem. 2015, 13, 10968. (g) Yu, J. -S.; Zhou, J. Org. Chem. Front. 2016, 3, 298. (h) Yu, J. -S.; Liao, F. -M.; Gao, W. -M.; Liao, K.; Zuo, R. -L.; Zhou, J. Angew. Chem. Int. Ed. 2015, 54, 7381. (i) Zeng, X. -P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730. (j) Liao, F. -M.; Gao, X. -T.; Hu, X. -S.; Xie, S. -L.; Yu, J. -S.; Zhou, J. Sci. Bull. 2017, 62, 1504.

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(16)
  • Abstract views(782)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return