Citation: Zhang Mao-Mao, Luo Yuan-Yuan, Lu Liang-Qiu, Xiao Wen-Jing. Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts[J]. Acta Chimica Sinica, ;2018, 76(11): 838-849. doi: 10.6023/A18060237 shu

Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts

  • Corresponding author: Lu Liang-Qiu, luliangqiu@mail.ccnu.edu.cn Xiao Wen-Jing, wxiao@mail.ccnu.edu.cn
  • Received Date: 16 June 2018
    Available Online: 6 November 2018

    Fund Project: the National Natural Science Foundation of China 21572074the Natural Science Foundation of Hubei Province 2015CFA033the National Natural Science Foundation of China 21772053the Natural Science Foundation of Hubei Province 2017AHB047Project supported by the National Natural Science Foundation of China (Nos. 21572074, 21772052 and 21772053) and the Natural Science Foundation of Hubei Province (Nos. 2015CFA033 and 2017AHB047)the National Natural Science Foundation of China 21772052

Figures(34)

  • Transition metal catalysis is one of the most important tools to accurately forge chemical bonds in modern organic synthesis. Organocatalysis, a biomimetic catalysis usually with metal-free small organic molecules, is a relatively young research area that started to flourish at the beginning of this century. Catalytic allylic substitutions are a kind of versatile reactions in organic chemistry; the combination of transition metal catalysis and organocatalysis in these reactions not only significantly expands the scope of nucleophiles, but also helps to resolve the stereocontrol issues. This paper will summarize the advance in the field of catalytic asymmetric allylic substitutions through synergetic transition metal-and organocatalysis. According to the source of chirality, these advances will be classified to three types. The first type is the catalytic asymmetric allylic substitutions induced by chiral transition metal catalysts. For these reactions, chiral ligands, including phosphine ligands and hybrid P, N ligands, have been used to achieve the high enantioselectivity. The non-chiral organocatalysts, such as pyrrolidine, Brønsted acids and boron reagents, were only used to activate the nucleophile or assist the generation of π-allyl metal intermediates. The second type is the catalytic asymmetric allylic substitutions induced by chiral organocatalysts. For the reaction of this type, various chiral organocatalysts, including chiral amines, chiral ureas and others, not only activate the substrates, but also control the enantioselectivity of allylic substitutions well through covalent and non-covalent bonds. Non-chiral ligands were only used to improve the catalytic capacity of transition metals. The last type is the catalytic asymmetric allylic substitutions induced by both of chiral transition metal catalysts and chiral organocatalyst. This strategy can not only realize the excellent stereo-control, but also achieve the challenging diastereo-diversity, if there exist continuous chiral centers. Overall, the joint utilization of transition metals and organocatalysts can achieve many significant asymmetric allylic substitutions that were previously difficult to realize through single transition metal catalysis. Meanwhile, the mechanism of representative transformations will be briefly introduced and at last, the prospective in this area will be given, such as simpler allylic sources and greener catalyst system.
  • 加载中
    1. [1]

    2. [2]

      (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387. (b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144.

    3. [3]

      (a) Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron. Lett. 1970, 11, 3821. (b) Hata, G.; Takahashi, K.; Miyake, A. J. Chem. Soc., Chem. Commun. 1970, 1392.

    4. [4]

      Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.  doi: 10.1021/ja00447a064

    5. [5]

    6. [6]

      Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.  doi: 10.1021/cr1002744

    7. [7]

      (a) Yan, X. X.; Liang, C. G.; Zhang, Y.; Hong, W.; Cao, B. X.; Dai, L. X.; Hou, X. L. Angew. Chem., Int. Ed. 2005, 44, 6544. (b) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 771. (c) Zhang, K.; Peng, Q.; Hou, X.-L. Angew. Chem., Int. Ed. 2008, 47, 1741. (d) Liu, W.; Chen, D.; Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734. (e) Lei, B.-L.; Ding, C.-H.; Yang, X.-F.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734. (f) Li, X.-H.; Zheng, B.-H.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2013, 15, 6086.

    8. [8]

    9. [9]

      (a) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567. (b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.

    10. [10]

      (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (b) Chen, Y.-C. Synlett 2008, 13, 1919. (c) Xu, L.-W.; Lu, Y.-X. Org. Biomol. Chem. 2008, 6, 2047.

    11. [11]

      Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.  doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett. 2007, 9, 5063.  doi: 10.1021/ol7023554

    13. [13]

      Vulovic, B.; Bihelovic, F.; Matovic, R.; Saicic, R. N. Tetrahedron 2009, 65, 10485.  doi: 10.1016/j.tet.2009.10.006

    14. [14]

      (a) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 19354. (b) Zhao, X.; Liu, D.; Xie, F.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2011, 9, 1871.

    15. [15]

      Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.  doi: 10.1002/anie.201403410

    16. [16]

      Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570.  doi: 10.1021/ol5000988

    17. [17]

      Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314  doi: 10.1021/ja0608139

    18. [18]

      Zhou, H.; Yang, H.; Liu, M.; Xia, C.; Jiang, G. Org. Lett. 2014, 16, 5350.  doi: 10.1021/ol502535z

    19. [19]

      Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Córdova, A. Chem. Eur. J. 2012, 18, 2972.  doi: 10.1002/chem.201103366

    20. [20]

      Ma, G.; Afewerki, S.; Deiana, L.; Palo-Nieto, C.; Liu, L.; Sun, J.; Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2013, 52, 6050.  doi: 10.1002/anie.201300559

    21. [21]

      Afewerki, S.; Ma, G.; Ibrahem, I.; Liu, L.; Sun, J.; Córdova, A. ACS Catal. 2015, 5, 1266.  doi: 10.1021/cs501975u

    22. [22]

      Halskov, K. S.; N sborg, L.; Tur, F.; J rgensen, K. A. Org. Lett. 2016, 18, 2220.  doi: 10.1021/acs.orglett.6b00852

    23. [23]

      Laugeois, M.; Ponra, S.; Ratovelomanana-Vidal, V.; Michelet, V.; Vitale, M. R. Chem. Commun. 2016, 52, 5332.  doi: 10.1039/C6CC01775D

    24. [24]

      Meazza, M.; Rios, R. Chem. Eur. J. 2016, 22, 9923.  doi: 10.1002/chem.201601893

    25. [25]

      Leth, L. A.; Glaus, F.; Meazza, M.; Fu, L.; Th gersen, M.-K.; Bitsch, E.-A.; J rgensen, K. A. Angew. Chem., Int. Ed. 2016, 55, 15272.  doi: 10.1002/anie.v55.49

    26. [26]

      (a) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853. (b) Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Synthesis 2014, 46, 1367.

    27. [27]

    28. [28]

      (a) Muzart, J.; Le Bras, J. Chem. Soc. Rev. 2014, 43, 3003. (b) Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524. (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.

    29. [29]

      Zhou, H.; Wang, Y.; Zhang, L.; Cai, M.; Luo, S. J. Am. Chem. Soc. 2017, 139, 3631.  doi: 10.1021/jacs.7b00437

    30. [30]

    31. [31]

      Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.  doi: 10.1021/ja074678r

    32. [32]

      Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.  doi: 10.1002/anie.v50.40

    33. [33]

    34. [34]

      Boucherif, A.; Duan S.-W.; Yuan, Z.-G.; Lu, L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2016, 358, 2594.  doi: 10.1002/adsc.v358.16

    35. [35]

      Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.  doi: 10.1021/jacs.6b04364

    36. [36]

      Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443.  doi: 10.1021/jacs.7b00462

    37. [37]

      Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.  doi: 10.1126/science.1237068

    38. [38]

      Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.  doi: 10.1021/ja5003247

    39. [39]

      Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.  doi: 10.1002/anie.201408380

    40. [40]

      Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.  doi: 10.1002/anie.201506933

    41. [41]

      Jiang, X.-Y.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.  doi: 10.1021/jacs.6b11692

    42. [42]

      (a) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093. (b) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819. (c) He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513. (d) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080. (e) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599.

    43. [43]

      Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.  doi: 10.1021/jacs.7b12174

    44. [44]

      Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.  doi: 10.1021/jacs.7b12824

    45. [45]

      Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.  doi: 10.1002/anie.201504749

    46. [46]

      Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.  doi: 10.1021/ja402740q

    47. [47]

      Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2016, 138, 14354.  doi: 10.1021/jacs.6b08236

    48. [48]

      Su, Y.-L.; Han, Z.-Y.; Li, Y.-H.; Gong, L.-Z. ACS Catal. 2017, 7, 7917.  doi: 10.1021/acscatal.7b02667

    49. [49]

      Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551.  doi: 10.1021/jacs.8b00868

    50. [50]

      Cong, X.; Zhai, S.; Zeng, X. Org. Chem. Front. 2016, 3, 673.  doi: 10.1039/C6QO00011H

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(52)
  • Abstract views(2270)
  • HTML views(369)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return