Citation: Zhou Xiao-Le, Su Yong-Liang, Wang Pu-Sheng, Gong Liu-Zhu. Asymmetric Allylic C-H Alkylation of 1, 4-Dienes with Aldehydes[J]. Acta Chimica Sinica, ;2018, 76(11): 857-861. doi: 10.6023/A18060235 shu

Asymmetric Allylic C-H Alkylation of 1, 4-Dienes with Aldehydes

  • Corresponding author: Wang Pu-Sheng, pusher@ustc.edu.cn Gong Liu-Zhu, gonglz@ustc.edu.cn
  • Received Date: 15 June 2018
    Available Online: 16 November 2018

    Fund Project: the National Natural Science Foundation of China 21502183Project supported by the National Natural Science Foundation of China (Nos. 21502183, 21602214)the National Natural Science Foundation of China 21602214

Figures(3)

  • In the recent decade, the palladium-catalyzed allylic C-H alkylation reaction of simple alkenes has been well-established as an efficient and atom-economical synthetic alternative for the fine chemical synthesis without the requirement of any prefunctionalization, in comparison with the conventional procedures. We recently established a highly enantioselective α-allylation reaction of enolizable aldehydes with terminal alkenes by using a ternary catalyst system, including palladium, amine, and chiral Brønsted acid, wherein the chiral anion controls the enantioselectivity. Although this protocol provides allylic alkylation products with high levels of enantioselectivity of up to 90% ee, the extension of the optimal conditions to a 1, 4-diene led to a very low regioslectivity. In the presence of a palladium complex, an oxidant and a chiral phosphoric acid, the 1, 4-diene could be smoothly oxidized and principally generated two regiomeric π-vinylallyl-palladium phosphate intermediates, either of which led to different products. Therefore, the simultaneous control of regio-and stereoselectivities in the allylic C-H alkylation reaction of aldehydes with 1, 4-dienes would pose additional challenge in comparison with a similar reaction of allylarenes. Herein, we will report an asymmetric α-allylation of enolizable aldehydes with a wide range of 1, 4-dienes enabled by cooperative catalysis of a palladium complex, amine, and a chiral Brønsted acid. The presence of 6 mol% Pd(OAc)2, 24 mol% P(4-MeOC6H4)3, 6 mol% chiral phosphoric acid (R)-TRIP, 80 mol% cumylamine and 1.50 equivalents of 2, 6-dimethylbenzoquinone enabled (E)-penta-1, 4-dien-1-ylbenzene (1a) to smoothly undergo the asymmetric allylic C-H alkylation reaction with 2-phenylpropanal (2a), giving rise to the desired α-allylated aldehyde 3a in a 77% isolated yield, 11:1 regioselectivity, 20:1 E/Z and 93% ee. Under the optimal conditions, the generality for enolizable aldehydes was investigated and revealed that 2-aryl propinonaldehydes bearing either electron-donating or electron-withdrawing substituent at the para-(3b~3f) or meta-(3g~3i) position of the phenyl moiety were nicely tolerated, giving rise to the desired allylation products in moderate to good yields with excellent regio-, E/Z-and enantioselectivities. Moreover, 2-naphthyl propinonaldehyde was also able to participate in the asymmetric allylic C-H alkylation reaction, providing the allylation product (3j) with 73% yield, 10:1 regioselectivity, 12:1 E/Z and 91% ee. The examination of 1, 4-dienes found that this protocol tolerated a wide scope of aryl and alkyl substituted 1, 4-dienes, which showed broad adaptability for the facile construction of a broad spectrum of chiral α-quaternary carbonyl compounds. In addition to the terminal aryl-substituted 1, 4-dienes (3k~3q), different substitution patterns were allowed to offer excellent enantioselectivities ranging from 92% ee to 95% ee. Interestingly, this protocol was also amenable to a long chain aliphatic substituent. Although a terminal phenyl (3r) group showed detrimental effect on the regio-and E/Z-selectivities, while the ester (3s), chloride (3t), ether (3u) and cyclohexyl (3v) groups were nicely compatible with the protocol, affording the products with satisfactory results in terms of yields, regio-and stereoselectivities.
  • 加载中
    1. [1]

      (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, 37, 388. (b) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (c) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593. (d) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.

    2. [2]

    3. [3]

      (a) Hayashi, T. J. Organomet. Chem. 1999, 576, 195. (b) Helmchen, G. J. Organomet. Chem. 1999, 576, 203. (c) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1. (d) Trost, B. M. J. Org. Chem. 2004, 69, 5813. (e) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747.

    4. [4]

      (a) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846. (b) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343. (c) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem. 2013, 2013, 2745. (d) Reeves, C. M.; Eidamshaus, C.; Kim, J.; Stoltz, B. M. Angew. Chem. Int. Ed. 2013, 52, 6718.

    5. [5]

      (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. (b) Jiang, G.; List, B. Angew. Chem. Int. Ed. 2011, 50, 9471. (c) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853. (d) Tao, Z. L.; Zhang, W. Q.; Chen, D. F.; Adele, A.; Gong, L. Z. J. Am. Chem. Soc. 2013, 135, 9255. (e) Wang, P. S.; Lin, H. C.; Zhai, Y. J.; Han, Z. Y.; Gong, L. Z. Angew. Chem. Int. Ed. 2014, 53, 12218. (f) Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Synthesis 2014, 46, 1367.

    6. [6]

    7. [7]

    8. [8]

      (a) Trost, B. M.; Thaisrivongs, D. A.; Donckele, E. J. Angew. Chem. Int. Ed. 2013, 52, 1523. (b) Trost, B. M.; Donckele, E. J.; Thaisrivongs, D. A.; Osipov, M.; Masters, J. T. J. Am. Chem. Soc. 2015, 137, 2776.

    9. [9]

    10. [10]

      (a) Wang, P. S.; Liu, P.; Zhai, Y. J.; Lin, H. C.; Han, Z. Y.; Gong, L. Z. J. Am. Chem. Soc. 2015, 137, 12732. (b) Lin, H. C.; Wang, P. S.; Tao, Z. L.; Chen, Y. G.; Han, Z. Y.; Gong, L. Z. J. Am. Chem. Soc. 2016, 138, 14354. (c) Wang, P. S.; Shen, M. L.; Wang, T. C.; Lin, H. C.; Gong, L. Z. Angew. Chem. Int. Ed. 2017, 56, 16032.

    11. [11]

      Tang, S.; Wu, X.; Liao, W.; Liu, K.; Liu, C.; Luo, S.; Lei, A. Org. Lett. 2014, 16, 3584.

    12. [12]

      (a) Lacour, J.; Moraleda, D. Chem. Commun. 2009, 7073. (b) Mahlau, M.; List, B. Isr. J. Chem. 2012, 52, 630. (c) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nature Chem. 2012, 4, 603. (d) Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. (e) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518.

    13. [13]

      (a) Oppolzer, W. Angew. Chem. Int. Ed. Engl. 1984, 23, 876. (b) Yasuda, H.; Nakamura, A. Angew. Chem. Int. Ed. Engl. 1987, 26, 723. (c) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371. (d) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. (e) Takao, K.; Munakata, R.; Tadano, K. Chem. Rev. 2005, 105, 4779.

    14. [14]

      (a) Trost, B. M.; Hansmann, M. M.; Thaisrivongs, D. A. Angew. Chem. Int. Ed. 2012, 51, 4950. (b) Trost, B. M.; Thaisrivongs, D. A.; Hansmann, M. M. Angew. Chem. Int. Ed. 2012, 51, 11522.

    15. [15]

      (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. (c) Terada, M. Synthesis 2010, 1929. (d) Yu, J.; Shi, F.; Gong, L. Z. Acc. Chem. Res. 2011, 44, 1156. (e) Wu, H.; He, Y.-P.; Shi, F. Synthesis 2015, 47, 1990.

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(17)
  • Abstract views(1438)
  • HTML views(354)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return