Citation: Li Maolin, Chen Mengqing, Xu Bin, Zhu Shoufei, Zhou Qilin. Enantioselective O-H Bond Insertion of α-Diazoketones with Alcohols Cooperatively Catalyzed by Achiral Dirhodium Complexes and Chiral Spiro Phosphoric Acids[J]. Acta Chimica Sinica, ;2018, 76(11): 883-889. doi: 10.6023/A18060234 shu

Enantioselective O-H Bond Insertion of α-Diazoketones with Alcohols Cooperatively Catalyzed by Achiral Dirhodium Complexes and Chiral Spiro Phosphoric Acids

  • Corresponding author: Zhu Shoufei, sfzhu@nankai.edu.cn Zhou Qilin, qlzhou@nankai.edu.cn
  • These authors contributed equally to this work.
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.
  • Received Date: 15 June 2018
    Available Online: 14 November 2018

    Fund Project: the National Natural Science Foundation of China 21532003the National Natural Science Foundation of China 21421062the "111" Project of the Ministry of Education of China B06005Project supported by the National Natural Science Foundation of China (Nos. 21625204, 21532003, 21421062), the "111" Project of the Ministry of Education of China (No. B06005), the National Program for Special Support of Eminent Professionals and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21625204

Figures(3)

  • Transition-metal-catalyzed asymmetric insertion of carbene into O-H bonds is a straightforward method for the synthesis of chiral alcohols and their derivatives. In recent years, a variety of chiral catalysts have been developed to achieve high enantioselective insertions of metal carbenes derived from α-diazoesters into O-H bonds of alcohols, phenols, carboxylic acids, and even water. However, there are few successful examples of the asymmetric O-H bond insertion using α-diazoketones as carbene precursors. In this paper, we report the first asymmetric O-H insertion of α-diazoketones with alcohols co-catalyzed by achiral dirhodium complexes and chiral spiro phosphoric acids. The reaction has high yields and high enantioselectivity (up to 95% ee). The present O-H bond insertion reaction provides an efficient method for the synthesis of very useful chiral α-alkoxy ketones, which are easily transformed to corresponding 1, 2-diol derivatives with excellent diastereoselectivity. The density functional theory (DFT) calculation was performed to study the mechanism of the reaction. It is found that the chiral spiro phosphoric acid can promote the proton transfer process of enol intermediates generated from rhodium carbene and alcohol like chiral proton-transfer shuttle and realize enantioselectivity control accordingly. Water are likely to participate in this proton transfer step and has a remarkable effect on the enantiocontrol of the reaction. A typical procedure for the enantioselective O-H bond insertion of α-diazoketones is as follows. Powered Rh2(TPA)4 (2.9 mg, 0.002 mmol, 1 mol%) and chiral spiro phosphoric acid (R)-1k (3.3 mg, 0.004 mmol, 2 mol%) were introduced into an oven-dried Schlenk tube in an argon-filled glovebox. After CHCl3 (2 mL) was injected into the Schlenk tube, the solution was stirred at 25℃ under the argon atmosphere. A solution of benzyl alcohol (21.6 mg, 0.2 mmol) and 1-diazo-1-phenylpropan-2-one (2a, 33.8 mg, 0.21 mmol) in 1 mL of CHCl3 were then introduced into the Schlenk tube containing catalysts. The resulting mixture was stirred at 25℃ until the diazo compound 2a disappeared. After concentration in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, V:V=15:1) to give (-)-1-(benzyloxy)-1-phenyl-propan-2-one (4a, 43.2 mg, 0.18 mmol, 90% yield) as a colorless oil.
  • 加载中
    1. [1]

    2. [2]

      For selected reviews, see: (a) Ye, T.; Mckervey, M. A. Chem.Rev. 1994, 94, 1091. (b) Zhang, Z.-H.; Wang, J.-B. Tetrahedron 2008, 64, 6577. (c) Zhu, S.-F.; Zhou, Q.-L. Acc.Chem.Res. 2012, 45, 1365. (d) Fei, N.; Gillingham, D. Chem.Soc.Rev. 2013, 42, 4918. (e) Zhu, S.-F.; Zhou, Q.-L. Nat.Sci.Rev. 2014, 1, 580. (f) Maguire, A. R.; McKervey, M. A. Chem.Rev. 2015, 115, 9981.

    3. [3]

      For selected examples, see: (a) Maier, T. C.; Fu, G. C. J.Am.Chem.Soc. 2006, 128, 4594. (b) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J.Am. Chem.Soc. 2007, 129, 12616. (c) Zhu, S.-F.; Chen, C.; Cai, Y.; Zhou, Q.-L. Angew.Chem., Int.Ed. 2008, 47, 932. (d) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J. Am.Chem.Soc. 2010, 132, 16374. (e) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat.Chem. 2010, 2, 546. (f) Osako, T.; Panichakul, D.; Uozumi, Y. Org.Lett. 2012, 14, 194. (g) Song, X.-G.; Zhu, S.-F.; Xie, X.-L.; Zhou, Q.-L. Angew.Chem., Int.Ed. 2013, 52, 2555. (h) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew.Chem., Int.Ed. 2014, 53, 2978. (i) Tan, F.; Liu, X.-H.; Hao, X.-Y.; Tang, Y.; Lin, L.-L.; Feng, X.-M. ACS Catal. 2016, 6, 6930. (j) Zhang, Y.-L.; Yao, Y.; He, L.; Liu, Y.; Shi, L. Adv.Synth. Catal. 2017, 359, 2754. (k) Huang, D.-R.; Xu, G.-Y.; Peng, S.-Y.; Sun, J.-T. Chem.Commun. 2017, 53, 3197.

    4. [4]

      For preparation and applications of α-diazoketones in catalytic asymmetric reactions, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. (b) Doyle, M. P.; Eismont, M. Y.; Zhou, Q.-L. Russ. Chem.Bull. 1997, 46, 955. (c) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; Watanabe, N.; Hashimoto, S. J.Am. Chem.Soc. 1999, 121, 1417. (d) Barberis, M.; Pérez-Prieto, J.; Stiriba, S.-E.; Lahuerta, P. Org.Lett. 2001, 3, 3317. (e) Hwang, C. H.; Chong, Y. H.; Song, S. Y.; Kwak, H. S.; Lee, E. Chem. Commun. 2004, 816. (f) Suga, H.; Ishimoto, D.; Higuchi, S.; Ohtsuka, M.; Arikawa, T.; Tsuchida, T.; Kakehi, A.; Baba, T. Org.Lett. 2007, 9, 4359. (g) Taber, D. F.; Tian, W. J.Org.Chem. 2008, 73, 7560. (h) Denton, J. R.; Davies, H. M. L. Org.Lett. 2009, 11, 787. (i) Xu, X.; Qian, Y.; Yang, L.; Hu, W. Chem.Commun. 2011, 47, 797. (j) Qian, Y.; Jing, C.; Liu, S.; Hu, W. Chem. Commun. 2013, 49, 2700. (k) Taber, D. F.; Paquette, C. M.; Gu, P.; Tian, W. J.Org.Chem. 2013, 78, 9772.

    5. [5]

      For non-enantioselective O—H insertion using α-diazoketones as carbene precursors, see: (a) Yates, P. J.Am.Chem.Soc. 1952, 74, 5376. (b) Shinada, T.; Kawakami, T.; Sakai, H.; Takada, I.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 3757. (c) Nelson, T. D.; Song, Z. J.; Thompson, A. S.; Zhao, M.; DeMarco, A.; Reamer, R. A.; Huntington, M. F.; Grabowsk, E. J.; Reider, P. J. Tetrahedron Lett. 2000, 41, 1877. (d) Muthusamy, S.; Babu, S. A.; Gunanathan, C. Tetrahedron Lett. 2002, 43, 3133. (e) Ronan, B.; Bacqué, E.; Barrière, J. C. Tetrahedron 2004, 60, 3819. (f) Muthusamy, S.; Gnanaprakasam, B.; Suresh, E. Org.Lett. 2005, 7, 4577. (g) Jung, J. C.; Avery, M. A. Tetrahedron Lett. 2006, 47, 7969.

    6. [6]

    7. [7]

    8. [8]

      Franklin, A. D.; Haque, M. S.; Robert, M. P. J. Org.Chem. 1989, 54, 2021.  doi: 10.1021/jo00269a054

    9. [9]

      Yin, J.-J.; Mark, A. H.; Karen, M. C.; Joseph, D. A. J.Org.Chem. 2006, 71, 840.  doi: 10.1021/jo052121t

    10. [10]

      For details of DFT calculation, see supporting information and relevant literature ref. 6c.

    11. [11]

      Liang, Y.; Zhou, H.-L.; Yu, Z.-X. J.Am.Chem.Soc. 2009, 131, 17783.  doi: 10.1021/ja9086566

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(23)
  • Abstract views(872)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return