Citation: Zhou Qiang, Lu Ping. Recent Advances in Cooperative Catalysis of Chiral Lewis Base and Transition Metal Catalyst[J]. Acta Chimica Sinica, ;2018, 76(11): 825-830. doi: 10.6023/A18060233 shu

Recent Advances in Cooperative Catalysis of Chiral Lewis Base and Transition Metal Catalyst

  • Corresponding author: Lu Ping, plu@fudan.edu.cn
  • Received Date: 15 June 2018
    Available Online: 24 November 2018

    Fund Project: Project supported by CURE (Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment) and Fudan University (for the start-up grant)

Figures(8)

  • Recent developments in the field of asymmetric α-functionalization of arylacetic acids and derivatives by combining chiral Lewis base and transition-metal catalyst are summarized. The unique character of Lewis bases, specifically, chiral benzotetramisole derivatives, plays a crucial role in these innovative strategies.
  • 加载中
    1. [1]

      (a) Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 1445; (b) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932; (c) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974; (d) Schrock, R. R. J. Am. Chem. Soc. 1974, 96, 6796; (e) Grubbs, R. H.; Brunck, T. K. J. Am. Chem. Soc. 1972, 94, 2538; (f) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518; (g) Baba, S.; Negishi, E. I. J. Am. Chem. Soc. 1976, 98, 6729; (i) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437;

    2. [2]

    3. [3]

      (a) Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214; (b) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.

    4. [4]

    5. [5]

      (a) Song, J.; Zhang, Z. J.; Chen, S. S.; Fan, T.; Gong, L. Z. J. Am. Chem. Soc. 2018, 140, 3177; (b) Spoehrle, S. S. M.; West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2017, 139, 11895; (c) Song, J.; Zhang, Z. J.; Gong, L. Z. Angew. Chem., Int. Ed. 2017, 56, 5212; (d) Lu, X.; Ge, L.; Cheng, C.; Chen, J.; Cao, W.; Wu, X. Chem. Eur. J. 2017, 23, 7689; (e) Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T. N. J. Am. Chem. Soc. 2016, 138, 5214; (f) Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87; (g) Fyfe, J. W. B.; Kabia, O. M.; Pearson, C. M.; Snaddon, T. N. Tetrahedron 2018, 74, 5383; (h) Schwarz, K. J.; Pearson, C. M.; Cintron-Rosado, G. A.; Liu, P.; Snaddon, T. N. Angew. Chem., Int. Ed. 2018, 57, 7800.

    6. [6]

      Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351.  doi: 10.1021/ol060065s

    7. [7]

      (a) Birman, V. B. Aldrichim. Acta 2016, 49, 23; (b) Taylor, J. E.; Bull, S. D.; Williams, J. M. Chem. Soc. Rev. 2012, 41, 2109; (c) Merad, J.; Pons, J. M.; Chuzel, O.; Bressy, C. Eur. J. Org. Chem. 2016, 2016, 5589

    8. [8]

      (a) Zhang, L.; Qureshi, L.; Sonaglia, L.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 13850; (b) Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 10589.

    9. [9]

      (a) Belmessieri, D.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2013, 15, 3472; (b) Díez, J.; Gamasa, M. P.; Panera, M. Inorg. Chem. 2006, 45, 10043.

    10. [10]

      Zhao, B.; Du, H.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 7220.  doi: 10.1021/ja802242h

    11. [11]

      Kawanka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 18028.  doi: 10.1021/ja9094044

    12. [12]

      West, T. H.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2014, 136, 4476.  doi: 10.1021/ja500758n

    13. [13]

      Soheili, A.; Tambar, U. K. J. Am. Chem. Soc. 2011, 133, 12956.  doi: 10.1021/ja204717b

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

Metrics
  • PDF Downloads(43)
  • Abstract views(2042)
  • HTML views(480)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return