Citation: Li Sujia, Lü Jian, Luo Sanzhong. Enantioselective Indium(I)/Chiral Phosphoric Acid-catalyzed[4+2] Cycloaddition of Simple Olefin and β, γ-Unsaturated α-Keto Esters[J]. Acta Chimica Sinica, ;2018, 76(11): 869-873. doi: 10.6023/A18060227 shu

Enantioselective Indium(I)/Chiral Phosphoric Acid-catalyzed[4+2] Cycloaddition of Simple Olefin and β, γ-Unsaturated α-Keto Esters

  • Corresponding author: Lü Jian, lvjian@iccas.ac.cn Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 8 June 2018
    Available Online: 26 November 2018

    Fund Project: the National Natural Science Foundation of China 21472193the National Natural Science Foundation of China 21521002the Chinese Academy of Sciences QYZDJ-SSW-SLU023the National Natural Science Foundation of China 21390400Project supported by the National Natural Science Foundation of China (Nos. 21390400, 21521002, 21472193) and the Chinese Academy of Sciences (No. QYZDJ-SSW-SLU023)

Figures(2)

  • Compared with indium(Ⅲ), indium(I) has both vacant p-orbitals and an electron lone pair, showing distinctive catalytic behaviors. However, chiral indium(I) catalysis has been rarely reported. Previously, we have developed asymmetric binary acid catalysis with indium(Ⅲ) and chiral phosphoric acid for a number of enantioselective transformations. Asymmetric binary-acid catalysis in[4+2] cycloaddition of β, γ-unsaturated α-keto esters with different olefins have been reported by our groups over the past five years. In 2013, we developed exo-selective and enantioselective[4+2] cycloaddition of simple industrial feedstock olefins, such as propene and isobutene, styrene and so on, catalyzed by In(BArF)3/1a. However, the reaction with electron-rich olefins, such as 4-methoxylstyrene did not work very well by indium(Ⅲ) catalysis due to uncontrolled polymerization side pathway. Very recently, we developed a new binary acid system InCl/1a, which could catalyze enantioselective[4+2] annulation of β, γ-unsaturated α-keto esters with much more electron-rich alkoxyallenes. In this study, we reported that the binary acid InCl and 1a was an effective and exo-selective catalyst for the[4+2] cycloaddition of simple olefins. In the presence of InCl (10 mol%) and chiral phosphoric acid 1a (10 mol%), the reaction occurred smoothly to afford the desired cycloadducts in moderate to good yields (20%~93%), with excellent diastereoselectivity (>95:5, exo/endo) and enantioselectivity (up to 99% ee) under the room temperature in CHCl3. Different olefins, such as styrenes 2, ring-strained norbornene 5a, norbornadiene 5b, and cyclopentadiene dimer 5c all worked well with excellent stereoselectivity under the optimal reaction conditions. More importantly, when 4-methoxylstyrene is used, the reaction can proceeded smoothly to afford[4+2] adduct 4k in 70% yield and good stereoselectivity (>95:5 dr, and 88% ee). The typical procedure for asymmetric[4+2] cycloaddition is as follows:To a dry reaction tube was added chiral phosphoric acid 1a (0.005 mmol, 5 mol%), InCl (0.005 mmol, 5 mol%), 4 MS (10 mg), 3 (0.1 mmol), then CHCl3 (0.5 mL) and 2 or 5 (0.5 mmol) was added to the mixture. The mixture was stirred for 24 h at room temperature. The mixture was purified by column chromatography to give the desired cycloaddition products 4 or 6.
  • 加载中
    1. [1]

      (a) Gewali, M. B.; Tezuka, Y.; Banskota, A. H.; Ali, M. S.; Saiki, I.; Dong, H.; Kadota, S. Org. Lett. 1999, 1, 1733. (b) Tezuka, Y.; Gewali, M. B.; Ali, M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 208. (c) Whiting, D. A. Nat. Prod. Rep. 1987, 4, 499.

    2. [2]

      (a) Fehr, C.; Galindo, J.; Ohloff, G. Helv. Chim. Acta 1981, 64, 1247. (b) Sera, A.; Ohara, M.; Yamada, H.; Egashira, E.; Ueda, N.; Setsune, J.-I. Chem. Lett. 1990, 19, 2043. (c) Dujardin, G.; Maudet, M.; Brown, E. Tetrahedron Lett. 1994, 35, 8619. (d) Leconte, S.; Dujardin, G.; Brown, E. Eur. J. Org. Chem. 2000, 639. (e) Maingot, L.; Leconte, S.; Chataigner, I.; Martel, A.; Dujardin, G. Org. Lett. 2009, 11, 1619. (f) Brown, E.; Dujardin, G.; Maudet, M. Tetrahedron 1997, 53, 9679.

    3. [3]

      (a) Lv, J.; Zhang, L.; Luo, S.; Cheng, J.-P. Angew. Chem., Int. Ed. 2013, 52, 9786; (b) Matumura, Y.; Suzuki, T.; Sakakura, A.; Ishihara, K. Angew. Chem., Int. Ed. 2014, 53, 6131.

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      For reviews on indium (Ⅲ) as a Lewis acid, see (a) Ranu, B. C.; Eur. J. Org. Chem. 2000, 2347. (b) Ghosh, R. Maiti, S. J. Mol. Catal. A: Chem. 2007, 264, 1. (c) Osten, K. M.; Mehrkhodavandi, P. Acc. Chem. Res. 2017, 50, 2861.

    8. [8]

      For recent selected examples of chiral indium(Ⅲ) Lewis acid- catalysis, see: (a) Zhao, J.-F.; Tsui, H.-Y.; Wu, P.-J.; Lu, J.; Loh, T.-P. J. Am. Chem. Soc. 2008, 130, 16492. (b) Yu, Z.; Liu, X.; Dong, Z.; Xie, M.; Feng, X. Angew. Chem. Int. Ed. 2008, 47, 1308. (c) Lin, L.; Kuang, Y.; Liu, X.; Feng, X. Org. Lett. 2011, 13, 3868. (d) Zhao, J.-F.; Tan, B.-H.; Loh, T.-P. Chem. Sci. 2011, 2, 349. (e) Zhao, B. Loh, T.-P. Org. Lett. 2013, 15, 2914. (f) Praveen, C.; Montaignac, B.; Vitale, M. R.; Ratovelomanana-Vidal, V.; Michelet, V. ChemCatChem 2013, 5, 2395. (g) Zhang, X.; Wang, M.; Ding, R.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2015, 17, 2736. (h) Wang, L.; Lv, J.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 10867.

    9. [9]

      (a) Schneider, U.; Kobayashi, S. Acc. Chem. Res. 2012, 45, 1331. (b) Tuck, D. G. Chem. Soc. Rev. 1993, 22, 269. (c) Andrews, C. G. Macdonald, C. L. B. Angew. Chem., Int. Ed. 2005, 44, 7453. (d) Cooper, B. F. T.; Andrews, C. G.; Macdonald, C. L. B. J. Organmet. Chem. 2007, 692, 2843. (e) Allan, C. J.; Cooper, B. F. T.; Cowley, H. J.; Rawson, J. M.; Macdonald, C. L. B. Chem. Eur. J. 2013, 19, 14470.

    10. [10]

      (a) Chakrabarti, A.; Konishi, H.; Yamaguchi, M.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2010, 49, 1838. (b) Huang, Y.-Y.; Chakrabarti, A.; Morita, N.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 11121. (c) Li, S.; Lv, J.; Luo, S. Org. Chem. Front. 2018, 5, 1787.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    12. [12]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(10)
  • Abstract views(790)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return