Citation: Zhang Yanyan, Wu Minghao, Wu Mingjie, Guo Linpei, Cao Lin, Wu Hongyi, Zhang Xuening. Study of Fluorescence and CT Bimodal Imaging of Ultrasmall Gold Nanoclusters[J]. Acta Chimica Sinica, ;2018, 76(9): 709-714. doi: 10.6023/A18060225 shu

Study of Fluorescence and CT Bimodal Imaging of Ultrasmall Gold Nanoclusters

  • Corresponding author: Zhang Xuening, luckyxn@126.com
  • † Both the authors contributed equally to this work
  • Received Date: 5 June 2018
    Available Online: 21 September 2018

    Fund Project: Project supported by the Program of the Tianjin Health and Family Planning Commission (No. 16KG115) and the Tianjin Medical University "13th Five-Year" Comprehensive Investment Subject Construction Project (No. 116015012017XK0202)the Program of the Tianjin Health and Family Planning Commission 16KG115the Tianjin Medical University "13th Five-Year" Comprehensive Investment Subject Construction Project 116015012017XK0202

Figures(9)

  • Multimodality imaging can integrate structural/functional information from different imaging tools, thus provide more accurate diagnosis than each single imaging modality. Au nanoclusters (AuNCs) are unique and have rich X-ray attenuation and fluorescent properties based on strong quantum confinement effect (SQCE); however, there is a huge challenge to simultaneously improve both X-ray imaging ability and fluorescent properties by adjusting sizes under the requirements of in vivo biological application. In this study, using rGSH as reductant and stabilizer, we developed a sub-nanometer ultrasmall AuNCs (Us-Au15NCs) as an optimized multimodal imaging probe with enhanced imaging ability by accurately adjusting pH to 8. For the first time, the in vitro both enhanced fluorescent and X-ray computed tomography (CT) bimodal imaging ability of AuNCs were investigated. By adjusting the pH and the proportion of Au3+ ions to GSH, the fluorescence intensity of the Us-AuNCs was strengthened and the emission peak showed red-shifts from 510 nm to 683 nm. While promising and exciting, the attenuation coefficient verified by the HU (hounsfield unit) values was increased almost linearly with the ratio increasing, which preserved the excellent X-ray imaging ability of Us-AuNCs. In addition, With a demonstrated better X-ray attenuation property than that of clinically used iodinated small molecular contrast agent (e.g., Iohexol), the developed Us-Au15NCs enabled efficient and enhanced CT imaging. Thus, the synthesized Us-Au15NCs characterised by UV-vis spectra and fluorescence spectra could simultaneously possess superior CT contrast ability and significant photoluminescence properties. Transmission electron microscopy (TEM) results revealed that the morphology was uniform spherical shape. Moreover, the Us-Au15NCs shows excellent stability, low cytotoxicity and good biocompatibility. Furthermore, the prepared Us-Au15NCs was confirmed to be effective and applicable for fluorescent imaging of 4T1 tumor cells, which determining that the Us-Au15NCs was more effectively involved with the cancer cells. The significance of this study is that rather than the synthesis of Us-AuNCs only, the prepared Us-Au15NCs may serve as multimodality imaging contrast agent with fluorescence and CT imaging for clinical diagnosis application.
  • 加载中
    1. [1]

      Yang, Y.; Wang, S.; Xu, C.; Xie, A.; Shen, Y.; Zhu, M. Chem. Commun. 2018, 54, 2731.  doi: 10.1039/C8CC00685G

    2. [2]

      Zeng, Y.; Zhang, D.; Wu, M.; Liu, Y.; Zhan, X.; Li, L.; Li, Z.; Han, X.; Wei, X.; Liu, X. ACS Appl. Mater. Inter. 2014, 6, 14266.  doi: 10.1021/am503583s

    3. [3]

      Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D. G.; Duan, X. Biomaterials 2018, 165, 14.  doi: 10.1016/j.biomaterials.2018.02.032

    4. [4]

      Gao, D.; Sheng, Z.; Liu, Y.; Hu, D.; Zhang, J.; Zhang, X.; Zheng, H.; Yuan, Z. Adv. Healthc. Mater. 2017, 6, 1601094.  doi: 10.1002/adhm.v6.1

    5. [5]

      Hekman, M. C. H.; Rijpkema, M.; Bos, D. L.; Oosterwijk, E.; Goldenberg, D. M.; Mulders, P. F. A.; Boerman, O. C. J. Nucl. Med. 2017, 58, 706.  doi: 10.2967/jnumed.116.185470

    6. [6]

      Cui, H.; Wang, R.; Zhou, Y.; Shu, C.; Song, F.; Zhong, W. Luminescence 2016, 31, 813.  doi: 10.1002/bio.v31.3

    7. [7]

      Lee, H. J.; Im, D. J.; Youn, J. C.; Chang, S.; Suh, Y. J.; Hong, Y. J.; Kim, Y. J.; Hur, J.; Choi, B. W. Radiology 2016, 280, 49.  doi: 10.1148/radiol.2016151289

    8. [8]

      Zhang, J.; Li, C.; Zhang, X.; Huo, S.; Jin, S.; An, F.-F.; Wang, X.; Xue, X.; Okeke, C. I.; Duan, G.; Guo, F.; Zhang, X.; Hao, J.; Wang, P. C.; Zhang, J. c.; Liang, X. J. Biomaterials 2015, 42, 103.  doi: 10.1016/j.biomaterials.2014.11.053

    9. [9]

      Yang, Y.; Zhang, L.; Cai, J.; Li, X.; Cheng, D.; Su, H.; Zhang, J.; Liu, S.; Shi, H.; Zhan, Y.; Zhang, C. ACS Appl. Mater. Inter. 2016, 8, 1718.  doi: 10.1021/acsami.5b09274

    10. [10]

      Huang, X.; Zhang, F.; Lee, S.; Swierczewska, M.; Kiesewetter, D. O.; Lang, L.; Zhang, G.; Zhu, L.; Gao, H.; Choi, H. S.; Niu, G.; Chena, X. Biomaterials 2012, 33, 4370.  doi: 10.1016/j.biomaterials.2012.02.060

    11. [11]

      Rammohan, A.; Mishra, G.; Mahaling, B.; Tayal, L.; Mukhopadhyay, A.; Gambhi, S.; Sharma, A.; Sivakumar, S. ACS Appl. Mater. Inter. 2016, 8, 350.  doi: 10.1021/acsami.5b08885

    12. [12]

      Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888-889.  doi: 10.1021/ja806804u

    13. [13]

      Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Nanoscale 2012, 4, 4027.  doi: 10.1039/c2nr30900a

    14. [14]

      Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.

    15. [15]

      Bartlett, P. A.; Bauer, B.; Singer, S. J. J. Am. Chem. Soc. 1978, 100, 5085.  doi: 10.1021/ja00484a029

    16. [16]

      Zhou, Y.; Li, G. Acta Phys.-Chem. Sin. 2017, 33, 1297.  doi: 10.3866/PKU.WHXB201704101

    17. [17]

      Lin, C.; Gong, H.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 704.
       

    18. [18]

      Liu, Q.; Wang, X.; Ren, Y.; Yang, X.; Wu, Z.; Liu, X.; Li, L.; Miao, S.; Su, Y.; Li, Y.; Liang, C.; Huang, Y. Chin. J. Chem. 2018, 36, 329.  doi: 10.1002/cjoc.v36.4

    19. [19]

      Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567.  doi: 10.1002/cjoc.v35.5

    20. [20]

      Zhang, L.; Wang, E. Nano Today 2014, 9, 132.  doi: 10.1016/j.nantod.2014.02.010

    21. [21]

      Kong, Y.; Fan, A. J. Anal. Sci. 2018, 34, 47.
       

    22. [22]

      Peng, T.; Wang, J.; Xie, S.; Yao, K.; Sun, S.; Zeng, Y.; Jiang, H. Chin. J. Anal. Chem. 2018, 46, 373.  doi: 10.11895/j.issn.0253-3820.170353

    23. [23]

      Lin, R.; Chen, Y.; Tao, G.; Pei, X.; Liu, F.; Li, N. Acta Chim. Sinica 2017, 75, 1103.
       

    24. [24]

      Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363.
       

    25. [25]

      Polavarapu, L.; Manna, M.; Xu, Q. Nanoscale 2011, 3, 429.  doi: 10.1039/C0NR00458H

    26. [26]

      Tian, R.; Yan, D.; Li, C.; Xu, S.; Liang, R.; Guo, L.; Wei, M.; Evans, D. G.; Duan, X. Nanoscale 2016, 8, 9815.  doi: 10.1039/C6NR01624C

    27. [27]

      Song, J.; Yang, X.; Zhang, X.; Yan, D.; Wang, Z.; Zhao, Y. ACS Appl. Mater. Inter. 2015, 7, 17287.  doi: 10.1021/acsami.5b04359

    28. [28]

      Stamplecoskie, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2014, 136, 11093.  doi: 10.1021/ja505361n

    29. [29]

      Yoon, B.; Koskinen, P.; Huber, B.; Kostko, O.; Issendorff, B. V.; Hakkinen, H.; Moseler, M.; Landman, U. ChemPhysChem 2007, 8, 157.
       

    30. [30]

      Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409.  doi: 10.1146/annurev.physchem.58.032806.104546

    31. [31]

      Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.  doi: 10.1103/PhysRevLett.93.077402

    32. [32]

      Shang, L.; Nienhaus, G. U. Biophys. Rev. 2012, 4, 313.  doi: 10.1007/s12551-012-0076-9

    33. [33]

      Zhou, Y.; Li, Z.; Zheng, K.; Li, G. Acta Phys.-Chim. Sin. 2018, 34, 786.

    34. [34]

      Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594.  doi: 10.1039/c2cs15325d

    35. [35]

      Boronat, M.; Leyvapérez, A.; Corma, A. Acc. Chem. Res. 2014, 45, 834.
       

    36. [36]

      Roy, S.; Baral, A.; Bhattacharjee, R.; Jana, B.; Datta, A.; Ghosh, S.; Banerjee, A. Nanoscale 2015, 7, 1912.  doi: 10.1039/C4NR04338C

    37. [37]

      Ma, Z.; Wang, P.; Pei, Y. Nanoscale 2016, 8, 17044.  doi: 10.1039/C6NR04998B

    38. [38]

      Cai, H.; Li, K.; Li, J.; Wen, S.; Chen, Q.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Small 2015, 11, 4584.  doi: 10.1002/smll.v11.35

    39. [39]

      Wu, M.; Zhang, Y.; Zhang, Y.; Wu, M.; Wu, M.; Wu, H.; Cao, L.; Li, L.; Li, X.; Zhang, X. RSC Adv. 2018, 8, 1706.  doi: 10.1039/C7RA10155D

    40. [40]

      Feng, W.; Zhou, X.; Nie, W.; Chen, L.; Qiu, K.; Zhang, Y.; He, C. ACS Appl. Mater. Inter. 2015 7, 4354.  doi: 10.1021/am508837v

    41. [41]

      Orza, A.; Yang, Y.; Feng, T.; Wang, X.; Wu, H.; Li, Y.; Yang, L.; Tang, X.; Mao, H. J. Med. Phys. 2016, 43, 589.  doi: 10.1118/1.4939062

    42. [42]

      Zhao, H. Y.; Liu, S.; He, J.; Pan, C. C.; Li, H.; Zhou, Z. Y.; Ding, Y.; Huo, D.; Hu, Y. Biomaterials 2015, 51, 194.  doi: 10.1016/j.biomaterials.2015.02.019

    43. [43]

      Zhu, H.; Wang, Y.; Chen, C.; Ma, M.; Zeng, J.; Li, S.; Xia, Y.; Gao, M. ACS Nano 2017, 11, 8273.  doi: 10.1021/acsnano.7b03369

    44. [44]

      Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. J. Am. Chem. Soc. 2012, 134, 16662.  doi: 10.1021/ja306199p

    45. [45]

      Yu, Y.; Chen, X.; Yao, Q.; Yu, Y.; Yan, N.; Xie, J. Chem. Mater. 2013, 25, 946.  doi: 10.1021/cm304098x

    46. [46]

      Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Biomaterials 2012, 33, 6408.  doi: 10.1016/j.biomaterials.2012.05.047

    47. [47]

      Dou, Y.; Guo, Y.; Li, X.; Li, X.; Wang, S.; Wang, L.; Lv, G.; Zhang, X.; Wang, H.; Gong, X.; Chang, J. ACS Nano 2016, 10, 2536.  doi: 10.1021/acsnano.5b07473

    48. [48]

      Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.  doi: 10.1103/PhysRevLett.93.077402

    49. [49]

      Chattoraj, S.; Amin, M. A.; Mohapatra, S.; Ghosh, S.; Bhattacharyya, K. ChemPhysChem 2016, 17, 61.  doi: 10.1002/cphc.v17.1

    50. [50]

      Shibu, E. S.; Radha, B.; Verma, P. K.; Bhyrappa, P.; Kulkarni, G. U.; Pal, S. K.; Pradeep, T. ACS Appl. Mater. Inter. 2009, 1, 2199.  doi: 10.1021/am900350r

    51. [51]

      Xia, Y.; Wu, X.; Zhao, J.; Zhao, J.; Li, Z.; Ren, W.; Tian, Y.; Li, A.; Shen, Z.; Wu, A. Nanoscale 2016, 8, 18682.  doi: 10.1039/C6NR07172D

    52. [52]

      George, A.; Shibu, E. S.; Maliyekkal, S. M.; Bootharaju, M. S.; Pradeep, T. ACS Appl. Mater. Inter. 2012, 4, 639.  doi: 10.1021/am201292a

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    6. [6]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    11. [11]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    12. [12]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(28)
  • Abstract views(1658)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return