Citation: Zhang Yanyan, Wu Minghao, Wu Mingjie, Guo Linpei, Cao Lin, Wu Hongyi, Zhang Xuening. Study of Fluorescence and CT Bimodal Imaging of Ultrasmall Gold Nanoclusters[J]. Acta Chimica Sinica, ;2018, 76(9): 709-714. doi: 10.6023/A18060225 shu

Study of Fluorescence and CT Bimodal Imaging of Ultrasmall Gold Nanoclusters

  • Corresponding author: Zhang Xuening, luckyxn@126.com
  • † Both the authors contributed equally to this work
  • Received Date: 5 June 2018
    Available Online: 21 September 2018

    Fund Project: Project supported by the Program of the Tianjin Health and Family Planning Commission (No. 16KG115) and the Tianjin Medical University "13th Five-Year" Comprehensive Investment Subject Construction Project (No. 116015012017XK0202)the Program of the Tianjin Health and Family Planning Commission 16KG115the Tianjin Medical University "13th Five-Year" Comprehensive Investment Subject Construction Project 116015012017XK0202

Figures(9)

  • Multimodality imaging can integrate structural/functional information from different imaging tools, thus provide more accurate diagnosis than each single imaging modality. Au nanoclusters (AuNCs) are unique and have rich X-ray attenuation and fluorescent properties based on strong quantum confinement effect (SQCE); however, there is a huge challenge to simultaneously improve both X-ray imaging ability and fluorescent properties by adjusting sizes under the requirements of in vivo biological application. In this study, using rGSH as reductant and stabilizer, we developed a sub-nanometer ultrasmall AuNCs (Us-Au15NCs) as an optimized multimodal imaging probe with enhanced imaging ability by accurately adjusting pH to 8. For the first time, the in vitro both enhanced fluorescent and X-ray computed tomography (CT) bimodal imaging ability of AuNCs were investigated. By adjusting the pH and the proportion of Au3+ ions to GSH, the fluorescence intensity of the Us-AuNCs was strengthened and the emission peak showed red-shifts from 510 nm to 683 nm. While promising and exciting, the attenuation coefficient verified by the HU (hounsfield unit) values was increased almost linearly with the ratio increasing, which preserved the excellent X-ray imaging ability of Us-AuNCs. In addition, With a demonstrated better X-ray attenuation property than that of clinically used iodinated small molecular contrast agent (e.g., Iohexol), the developed Us-Au15NCs enabled efficient and enhanced CT imaging. Thus, the synthesized Us-Au15NCs characterised by UV-vis spectra and fluorescence spectra could simultaneously possess superior CT contrast ability and significant photoluminescence properties. Transmission electron microscopy (TEM) results revealed that the morphology was uniform spherical shape. Moreover, the Us-Au15NCs shows excellent stability, low cytotoxicity and good biocompatibility. Furthermore, the prepared Us-Au15NCs was confirmed to be effective and applicable for fluorescent imaging of 4T1 tumor cells, which determining that the Us-Au15NCs was more effectively involved with the cancer cells. The significance of this study is that rather than the synthesis of Us-AuNCs only, the prepared Us-Au15NCs may serve as multimodality imaging contrast agent with fluorescence and CT imaging for clinical diagnosis application.
  • 加载中
    1. [1]

      Yang, Y.; Wang, S.; Xu, C.; Xie, A.; Shen, Y.; Zhu, M. Chem. Commun. 2018, 54, 2731.  doi: 10.1039/C8CC00685G

    2. [2]

      Zeng, Y.; Zhang, D.; Wu, M.; Liu, Y.; Zhan, X.; Li, L.; Li, Z.; Han, X.; Wei, X.; Liu, X. ACS Appl. Mater. Inter. 2014, 6, 14266.  doi: 10.1021/am503583s

    3. [3]

      Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D. G.; Duan, X. Biomaterials 2018, 165, 14.  doi: 10.1016/j.biomaterials.2018.02.032

    4. [4]

      Gao, D.; Sheng, Z.; Liu, Y.; Hu, D.; Zhang, J.; Zhang, X.; Zheng, H.; Yuan, Z. Adv. Healthc. Mater. 2017, 6, 1601094.  doi: 10.1002/adhm.v6.1

    5. [5]

      Hekman, M. C. H.; Rijpkema, M.; Bos, D. L.; Oosterwijk, E.; Goldenberg, D. M.; Mulders, P. F. A.; Boerman, O. C. J. Nucl. Med. 2017, 58, 706.  doi: 10.2967/jnumed.116.185470

    6. [6]

      Cui, H.; Wang, R.; Zhou, Y.; Shu, C.; Song, F.; Zhong, W. Luminescence 2016, 31, 813.  doi: 10.1002/bio.v31.3

    7. [7]

      Lee, H. J.; Im, D. J.; Youn, J. C.; Chang, S.; Suh, Y. J.; Hong, Y. J.; Kim, Y. J.; Hur, J.; Choi, B. W. Radiology 2016, 280, 49.  doi: 10.1148/radiol.2016151289

    8. [8]

      Zhang, J.; Li, C.; Zhang, X.; Huo, S.; Jin, S.; An, F.-F.; Wang, X.; Xue, X.; Okeke, C. I.; Duan, G.; Guo, F.; Zhang, X.; Hao, J.; Wang, P. C.; Zhang, J. c.; Liang, X. J. Biomaterials 2015, 42, 103.  doi: 10.1016/j.biomaterials.2014.11.053

    9. [9]

      Yang, Y.; Zhang, L.; Cai, J.; Li, X.; Cheng, D.; Su, H.; Zhang, J.; Liu, S.; Shi, H.; Zhan, Y.; Zhang, C. ACS Appl. Mater. Inter. 2016, 8, 1718.  doi: 10.1021/acsami.5b09274

    10. [10]

      Huang, X.; Zhang, F.; Lee, S.; Swierczewska, M.; Kiesewetter, D. O.; Lang, L.; Zhang, G.; Zhu, L.; Gao, H.; Choi, H. S.; Niu, G.; Chena, X. Biomaterials 2012, 33, 4370.  doi: 10.1016/j.biomaterials.2012.02.060

    11. [11]

      Rammohan, A.; Mishra, G.; Mahaling, B.; Tayal, L.; Mukhopadhyay, A.; Gambhi, S.; Sharma, A.; Sivakumar, S. ACS Appl. Mater. Inter. 2016, 8, 350.  doi: 10.1021/acsami.5b08885

    12. [12]

      Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888-889.  doi: 10.1021/ja806804u

    13. [13]

      Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Nanoscale 2012, 4, 4027.  doi: 10.1039/c2nr30900a

    14. [14]

      Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.

    15. [15]

      Bartlett, P. A.; Bauer, B.; Singer, S. J. J. Am. Chem. Soc. 1978, 100, 5085.  doi: 10.1021/ja00484a029

    16. [16]

      Zhou, Y.; Li, G. Acta Phys.-Chem. Sin. 2017, 33, 1297.  doi: 10.3866/PKU.WHXB201704101

    17. [17]

      Lin, C.; Gong, H.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 704.
       

    18. [18]

      Liu, Q.; Wang, X.; Ren, Y.; Yang, X.; Wu, Z.; Liu, X.; Li, L.; Miao, S.; Su, Y.; Li, Y.; Liang, C.; Huang, Y. Chin. J. Chem. 2018, 36, 329.  doi: 10.1002/cjoc.v36.4

    19. [19]

      Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567.  doi: 10.1002/cjoc.v35.5

    20. [20]

      Zhang, L.; Wang, E. Nano Today 2014, 9, 132.  doi: 10.1016/j.nantod.2014.02.010

    21. [21]

      Kong, Y.; Fan, A. J. Anal. Sci. 2018, 34, 47.
       

    22. [22]

      Peng, T.; Wang, J.; Xie, S.; Yao, K.; Sun, S.; Zeng, Y.; Jiang, H. Chin. J. Anal. Chem. 2018, 46, 373.  doi: 10.11895/j.issn.0253-3820.170353

    23. [23]

      Lin, R.; Chen, Y.; Tao, G.; Pei, X.; Liu, F.; Li, N. Acta Chim. Sinica 2017, 75, 1103.
       

    24. [24]

      Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363.
       

    25. [25]

      Polavarapu, L.; Manna, M.; Xu, Q. Nanoscale 2011, 3, 429.  doi: 10.1039/C0NR00458H

    26. [26]

      Tian, R.; Yan, D.; Li, C.; Xu, S.; Liang, R.; Guo, L.; Wei, M.; Evans, D. G.; Duan, X. Nanoscale 2016, 8, 9815.  doi: 10.1039/C6NR01624C

    27. [27]

      Song, J.; Yang, X.; Zhang, X.; Yan, D.; Wang, Z.; Zhao, Y. ACS Appl. Mater. Inter. 2015, 7, 17287.  doi: 10.1021/acsami.5b04359

    28. [28]

      Stamplecoskie, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2014, 136, 11093.  doi: 10.1021/ja505361n

    29. [29]

      Yoon, B.; Koskinen, P.; Huber, B.; Kostko, O.; Issendorff, B. V.; Hakkinen, H.; Moseler, M.; Landman, U. ChemPhysChem 2007, 8, 157.
       

    30. [30]

      Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409.  doi: 10.1146/annurev.physchem.58.032806.104546

    31. [31]

      Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.  doi: 10.1103/PhysRevLett.93.077402

    32. [32]

      Shang, L.; Nienhaus, G. U. Biophys. Rev. 2012, 4, 313.  doi: 10.1007/s12551-012-0076-9

    33. [33]

      Zhou, Y.; Li, Z.; Zheng, K.; Li, G. Acta Phys.-Chim. Sin. 2018, 34, 786.

    34. [34]

      Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594.  doi: 10.1039/c2cs15325d

    35. [35]

      Boronat, M.; Leyvapérez, A.; Corma, A. Acc. Chem. Res. 2014, 45, 834.
       

    36. [36]

      Roy, S.; Baral, A.; Bhattacharjee, R.; Jana, B.; Datta, A.; Ghosh, S.; Banerjee, A. Nanoscale 2015, 7, 1912.  doi: 10.1039/C4NR04338C

    37. [37]

      Ma, Z.; Wang, P.; Pei, Y. Nanoscale 2016, 8, 17044.  doi: 10.1039/C6NR04998B

    38. [38]

      Cai, H.; Li, K.; Li, J.; Wen, S.; Chen, Q.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Small 2015, 11, 4584.  doi: 10.1002/smll.v11.35

    39. [39]

      Wu, M.; Zhang, Y.; Zhang, Y.; Wu, M.; Wu, M.; Wu, H.; Cao, L.; Li, L.; Li, X.; Zhang, X. RSC Adv. 2018, 8, 1706.  doi: 10.1039/C7RA10155D

    40. [40]

      Feng, W.; Zhou, X.; Nie, W.; Chen, L.; Qiu, K.; Zhang, Y.; He, C. ACS Appl. Mater. Inter. 2015 7, 4354.  doi: 10.1021/am508837v

    41. [41]

      Orza, A.; Yang, Y.; Feng, T.; Wang, X.; Wu, H.; Li, Y.; Yang, L.; Tang, X.; Mao, H. J. Med. Phys. 2016, 43, 589.  doi: 10.1118/1.4939062

    42. [42]

      Zhao, H. Y.; Liu, S.; He, J.; Pan, C. C.; Li, H.; Zhou, Z. Y.; Ding, Y.; Huo, D.; Hu, Y. Biomaterials 2015, 51, 194.  doi: 10.1016/j.biomaterials.2015.02.019

    43. [43]

      Zhu, H.; Wang, Y.; Chen, C.; Ma, M.; Zeng, J.; Li, S.; Xia, Y.; Gao, M. ACS Nano 2017, 11, 8273.  doi: 10.1021/acsnano.7b03369

    44. [44]

      Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. J. Am. Chem. Soc. 2012, 134, 16662.  doi: 10.1021/ja306199p

    45. [45]

      Yu, Y.; Chen, X.; Yao, Q.; Yu, Y.; Yan, N.; Xie, J. Chem. Mater. 2013, 25, 946.  doi: 10.1021/cm304098x

    46. [46]

      Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Biomaterials 2012, 33, 6408.  doi: 10.1016/j.biomaterials.2012.05.047

    47. [47]

      Dou, Y.; Guo, Y.; Li, X.; Li, X.; Wang, S.; Wang, L.; Lv, G.; Zhang, X.; Wang, H.; Gong, X.; Chang, J. ACS Nano 2016, 10, 2536.  doi: 10.1021/acsnano.5b07473

    48. [48]

      Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.  doi: 10.1103/PhysRevLett.93.077402

    49. [49]

      Chattoraj, S.; Amin, M. A.; Mohapatra, S.; Ghosh, S.; Bhattacharyya, K. ChemPhysChem 2016, 17, 61.  doi: 10.1002/cphc.v17.1

    50. [50]

      Shibu, E. S.; Radha, B.; Verma, P. K.; Bhyrappa, P.; Kulkarni, G. U.; Pal, S. K.; Pradeep, T. ACS Appl. Mater. Inter. 2009, 1, 2199.  doi: 10.1021/am900350r

    51. [51]

      Xia, Y.; Wu, X.; Zhao, J.; Zhao, J.; Li, Z.; Ren, W.; Tian, Y.; Li, A.; Shen, Z.; Wu, A. Nanoscale 2016, 8, 18682.  doi: 10.1039/C6NR07172D

    52. [52]

      George, A.; Shibu, E. S.; Maliyekkal, S. M.; Bootharaju, M. S.; Pradeep, T. ACS Appl. Mater. Inter. 2012, 4, 639.  doi: 10.1021/am201292a

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    4. [4]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(25)
  • Abstract views(1569)
  • HTML views(391)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return