Citation: Zhang Jinlong, Jiang Gaoxi. Synthesis of Non-Natural Amino Acid Derivatives Bearing Triphenylamine Core Skeleton via Pd-Catalyzed Direct Asymmetric Allylic Alkylation[J]. Acta Chimica Sinica, ;2018, 76(11): 890-894. doi: 10.6023/A18060224 shu

Synthesis of Non-Natural Amino Acid Derivatives Bearing Triphenylamine Core Skeleton via Pd-Catalyzed Direct Asymmetric Allylic Alkylation

  • Corresponding author: Jiang Gaoxi, gxjiang@licp.cas.cn
  • Received Date: 5 June 2018
    Available Online: 14 November 2018

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20160396the National Natural Science Foundation of China 21602231Project supported by the National Natural Science Foundation of China (No. 21602231), and the Natural Science Foundation of Jiangsu Province (No. BK20160396)

Figures(1)

  • Allylic alkylation first pioneered by Tsuji in 1965 and, later adapted by Trost in 1973 with the introduction of phosphine ligands represents one of the straightforward and powerful synthetic tool for new carbon-carbon formation, especially the direct asymmetric allylic alkylation (AAA) has been widely utilized in the synthesis of natural products and pharmaceutical molecules. Conventionally, AAA reactions involve activated allylic alcohol derivatives, such as carbonates, amines, acetates, and halides, which require an equivalent strong base to react with the acidic by-product and inevitably results in stoichiometric waste. From the viewpoint of environmental and atom economy, the direct use of allylic alcohol instead its derivatives is much more practical by virtue of only water being formed as a byproduct. However, one of the challenges existed in such transformations is the poor reactivity of allylic alcohol. In 2006, a breakthrough was first made by Trost group, by using stoichiometric amounts of borane as the critical promoter in the direct AAA reaction of indoles with allylic alcohols. Afterwards, List, Gong, and Zhang reported independently the significant achievements applying aldehyde, pyrazol-5-ones, and ketones as nucleophiles, respectively. In 2004, our group enclosed the Brønsted acid accelerated Pd-catalyzed direct asymmetric allylic alkylation of azlactones with simple allylic alcohols. On the other hand, triphenylamine (TPA) as a strong electron-donating and oxidative stable molecule has been extensively utilized in the new organic electroluminescent materials, special dye synthesis and organic solar cells. Considering the impressive fluorescence emission ability of TPA and basing on these pioneering works, we reasoned that the direct connection of the TPA substructure with amino acid molecules could give rise to the fluorescence emission compounds. Thus, we report here the first installation of the non-natural amino acid derivatives bearing TPA core skeleton via Pd-catalyzed direct AAA reaction and the desired products were obtained with excellent yields (68%~95%) and enantioselectivities (90%~97% ee). The optimized reaction condition is as following:To a dried Schlenk tube were added activated 5 MS (100 mg), Pd2(dba)3 (4.0 mol%), L3 (10.0 mol%), solvent toluene (1.0 mL), and was stirred at 60℃ for 20 min. Then the reaction mixture was cooled down to room temperature, azlactones 1 (0.2 mmol), allylic alcohol 2 (0.3 mmol) and benzoic acid (10.0 mol%) in toluene (1.0 mL) was added and continue to stir at 60℃ for 20 h until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by flash chromatography on silica gel to afford the desired product.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      For review, see: (g) Muzart, J. Tetrahedron 2005, 61, 4179; (b) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. For early works on allylation reactions activated by Lewis acids or Br sted acid, see: (a) Star, I.; Stará, I.; Kočovsk, P. Tetrahedron Lett. 1993, 34, 179. (b) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109. (c) Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4877. (d) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.

    4. [4]

    5. [5]

      (a) Chua, C. J.; Ren, Y.; Baumgartner, T. B. Org. Lett. 2012, 14, 1588; (b) Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Kung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H. Chem. Sci. 2016, 7, 4044; (c) Zhan, X.; Wu, Z.; Lin, Y.; Xie, Y.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Chem. Sci. 2016, 7, 4355; (d) Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y.; Wang, Y. Angew. Chem., Int. Ed. 2017, 56, 11525; (e) Liu, Q.; Zhao, C.; Tian, G.; Ge, H. RSC Adv. 2018, 8, 805; (f) Chen, W.-C.; Yuan, Y.; Zhu, Z.-L.; Jiang, Z.-Q.; Su, S.-J.; Liao, L.-S.; Lee, C.-S. Chem. Sci. 2018, 9, 4062.

    6. [6]

      (a) Lin, L.-C.; Yen, H.-J.; Chen, C.-J.; Tsai, C.-L.; Liou, G.-S. Chem. Commun. 2014, 50, 13917; (b) Tang, M.-C.; Tsang, D. P.-K.; Wong, Y.-C.; Chan, M.-Y.; Wong, K. M.-C.; Yam, V. W.-W. J. Am. Chem. Soc. 2014, 136, 17861; (c) Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Voorhis, T. V.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908.

    7. [7]

      (a) Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459; (b) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550; (c) Esteban, S. G.; de la Cruz, P.; Aljarilla, A.; Arellano, L. M.; Langa, F. Org. Lett. 2011, 13, 5326; (d) Baheti, A.; Singh, P.; Lee, C.-P.; Thomas, K. R. J.; Ho, K.-C. J. Org. Chem. 2011, 76, 4910; (e) Zhang, J.; Wu, G.; He, C.; Deng, D.; Li, Y. J. Mater. Chem. 2011, 21, 3768; (f) Aljrilla, A.; López-Arroyo, L.; de la Cruz, P.; Oswald, F.; Meyer, T. B.; Langa, F. Org. Lett. 2012, 14, 5732; (g) Tan, Y.; Liang, M.; Lu, Z.; Zheng, Y.; Tong, X.; Sun, Z.; Xue, S. Org. Lett. 2014, 16, 3978; (h) Li, Z.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, K.-Y. J. Am. Chem. Soc. 2016, 138, 11833; (i) Chiykowski, V. A.; Lam, B.; Du, C.; Berlinguette, C. P. Chem. Commun. 2017, 53, 2367.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    5. [5]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    6. [6]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    10. [10]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    14. [14]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(8)
  • Abstract views(740)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return