Citation: Zhang Dandan, Yuan Zhenzhou, Zhang Guoqing, Tian Nan, Liu Danmin, Zhang Yongzhe. Preparation and Characterization of Black Phosphorus[J]. Acta Chimica Sinica, ;2018, 76(7): 537-542. doi: 10.6023/A18040175 shu

Preparation and Characterization of Black Phosphorus

  • Corresponding author: Liu Danmin, dmliu@bjut.edu.cn
  • Received Date: 28 April 2018
    Available Online: 6 July 2018

    Fund Project: the Science and Technology Commission of Beijing Municipality Z151100003315018the National Natural Science Foundation of China 61575010Project supported by the National Natural Science Foundation of China (Nos. 51671006 and 61575010), the Natural Science Foundation of Beijing (No. 4162016), and the Science and Technology Commission of Beijing Municipality (No. Z151100003315018)the Natural Science Foundation of Beijing 4162016the National Natural Science Foundation of China 51671006

Figures(7)

  • Black phosphorus has attracted broad interest because of their low-dimensional effect, and has become a new kind of two-dimensional (2D) materials. Phosphorus has several allotropes. Black phosphorus is the most thermodynamic stable in them. As a kind of two-dimensional materials, black phosphorus has high carrier mobility and on/off ratio. The band gap of black phosphorus can be adjusted by its number of layers from 0.3 to 2 eV. It is of great significance to the development of new infrared and near-infrared optoelectronic devices. Currently, the main methods for preparing black phosphorus are chemical vapor transfer and high energy ball milling methods. In this paper, black phosphorus was successfully synthesized from red phosphorus via chemical vapor transfer and high energy ball milling methods. Then black phosphorus was put in ethanol for 10 min to liquid exfoliation, in which the ultrasonic power was 400 W. The microstructures and stability of black phosphorus synthesized by two methods were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimeter (DSC). In situ electrical measurements of black phosphorus prepared by chemical vapor transfer were performed using a commercial scanning tunnelling microscope-transmission electron microscope probing system (STM-TEM, Nanofactory Instruments) inserted into a JEOL-2010F TEM. The microstructural characterization results show that there is some red phosphorus and amorphous phases in black phosphorus prepared by high energy ball milling method. On the contrary, the black phosphorus prepared by chemical vapor transfer method has no amorphous phases. The XRD results show that black phosphorus synthesized by chemical vapor transfer method did not change significantly after keeping in the air for 16 days. The DSC results show that the volatile points of the black phosphorus prepared by high energy ball milling and chemical vapor transfer methods are respectively 394.5 and 432.2℃, which means the latter has better thermal stability. The TEM results show that a layer or two layers of phosphorene via liquid exfoliation had been obtained, which is large in size and clean in surface. After being irradiated in TEM with a dose of 0.8 eV/(Å2·s) at 200 kV for 60 min, few new diffraction spots appeared in black phosphorus synthesized by chemical vapor transfer method, which indicates it is relatively stable under electron radiation in vacuum. In a word, the black phosphorus prepared by chemical vapor transfer method has large size, good crystallinity, high purity, and high stability. It can be used to prepare two-dimensional black phosphorus by mechanical exfoliation and liquid exfoliation, and then be applied to advanced microelectronic devices.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    2. [2]

      Susarla, S.; Manimunda, P.; Morais Jaques, Y.; Hachtel, J.; Idrobo, J. C.; Syed Amanulla, S. A.; Galvao, D. S.; Tiwary, C. S.; Ajayan, P. M. ACS Nano 2018, DOI:10. 1021/acsnano. 8b01786.  doi: 10.1021/acsnano.8b01786

    3. [3]

      Lin, X.; Wang, J. Acta Chim. Sinica 2017, 75, 979. (in Chinese).
       

    4. [4]

      Yang, L.; Fu, Q.; Wang, W.; Huang, J.; Huang, J.; Zhang, J.; Xiang, B. Nanoscale 2015, 7, 10490.  doi: 10.1039/C5NR02652K

    5. [5]

      Tan, C.; Yu, P.; Hu, Y.; Chen, J.; Huang, Y.; Cai, Y.; Luo, Z.; Li, B.; Lu, Q.; Wang, L.; Liu, Z.; Zhang, H. J. Am. Chem. Soc. 2015, 137, 10430.  doi: 10.1021/jacs.5b06982

    6. [6]

      Liang, Y.; Feng, R.; Yang, S.; Ma, H.; Liang, J.; Chen, J. Adv. Mater. 2011, 23, 640.  doi: 10.1002/adma.201003560

    7. [7]

      Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2011, 11, 1423.  doi: 10.1021/nl200225j

    8. [8]

      Wang, X.; Zhi, L.; Müllen, K. Nano Lett. 2008, 8, 323.  doi: 10.1021/nl072838r

    9. [9]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  doi: 10.1021/nl0731872

    10. [10]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.  doi: 10.1126/science.1156965

    11. [11]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.  doi: 10.1038/nature04233

    12. [12]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.  doi: 10.1126/science.1157996

    13. [13]

      Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.  doi: 10.1038/nature04235

    14. [14]

      Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K. Nano Lett. 2013, 13, 1649.  doi: 10.1021/nl400107k

    15. [15]

      He, X.; Liu, F.; Zeng, Q.; Liu, Z. Acta Chim. Sinica 2015, 73, 924(in Chinese).
       

    16. [16]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    17. [17]

      Liu, S.; Huo, N.; Gan, S.; Li, Y.; Wei, Z.; Huang, B.; Liu, J.; Li, J.; Chen, H. J. Mater. Chem. C 2015, 3, 10974.  doi: 10.1039/C5TC01809A

    18. [18]

      Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5, 4458.  doi: 10.1038/ncomms5458

    19. [19]

      Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2014, 9, 372.  doi: 10.1038/nnano.2014.35

    20. [20]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8, 4033.  doi: 10.1021/nn501226z

    21. [21]

      Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Ozyilmaz, B. Appl. Phys. Lett. 2014, 104, 10451.
       

    22. [22]

      Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488(in Chinese).
       

    23. [23]

      Li, J.; Chen, C.; Liu, S.; Lu, J.; Goh, W. P.; Fang, H.; Qiu, Z.; Tian, B.; Chen, Z.; Yao, C.; Liu, W.; Yan, H.; Yu, Y.; Wang, D.; Wang, Y.; Lin, M.; Su, C.; Lu, J. Chem. Mater. 2018, DOI:10. 1021/acs. chemmater. 8b00521.  doi: 10.1021/acs.chemmater.8b00521

    24. [24]

      Zhang, Z.; Xin, X.; Yan, Q.; Li, Q.; Yang, Y.; Ren, T.-L. Sci. China Mater. 2016, 59, 122.  doi: 10.1007/s40843-016-0122-1

    25. [25]

      Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5, 4475.  doi: 10.1038/ncomms5475

    26. [26]

      Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Zant, H. S. J.; Castellanos-Gomez, A. Nano Lett. 2014, 14, 3347.  doi: 10.1021/nl5008085

    27. [27]

      Bridgeman, P. W. J. Am. Chem. Soc. 1914, 36, 1344.  doi: 10.1021/ja02184a002

    28. [28]

      Krebs, H.; Weitz, H.; Worms, K. H. Anorg. Allg. Chem. 1955, 280, 119.  doi: 10.1002/(ISSN)1521-3749

    29. [29]

      Brown, A.; Rundqvist, S. Acta Crystallogr. 1965, 19, 684.  doi: 10.1107/S0365110X65004140

    30. [30]

      Mamoru, B.; Fukunori, I.; Yuji, T.; Akira, M. Jpn. J. Appl. Phys. 1989, 28, 1019.  doi: 10.1143/JJAP.28.1019

    31. [31]

      Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Physica B+C 1981, 105, 99.  doi: 10.1016/0378-4363(81)90223-0

    32. [32]

      Park, C. M.; Sohn, H. J. Adv. Mater. 2007, 19, 2465.  doi: 10.1002/(ISSN)1521-4095

    33. [33]

      Nilges, T.; Kersting, M.; Pfeifer, T. J. Solid State Chem. 2008, 181, 17071.
       

    34. [34]

      Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. J. Cryst. Growth 2014, 405, 6.  doi: 10.1016/j.jcrysgro.2014.07.029

    35. [35]

      Lange, S.; Schmidt, P.; Nilges, T. Inorg. Chem. 2007, 46, 4028.  doi: 10.1021/ic062192q

    36. [36]

      Zhao, M.; Niu, X.; Guan, L.; Qian, H.; Wang, W.; Sha, J.; Wang, Y. CrystEngComm 2016, 18, 7737.  doi: 10.1039/C6CE01608A

    37. [37]

      Zhang, Z.; Xing, D.-H.; Li, J.; Yan, Q. CrystEngComm 2017, 19, 905.  doi: 10.1039/C6CE02550A

    38. [38]

      Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; Zhang, S.; Wang, K.; Moynihan, G.; Pokle, A.; Ramasse, Q. M.; McEvoy, N.; Blau, W. J.; Wang, J.; Abellan, G.; Hauke, F.; Hirsch, A.; Sanvito, S.; O'Regan, D. D.; Duesberg, G. S.; Nicolosi, V.; Coleman, J. N. Nat. Commun. 2015, 6, 8563.  doi: 10.1038/ncomms9563

    39. [39]

      Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. Adv. Mater. 2015, 27, 1887.  doi: 10.1002/adma.v27.11

    40. [40]

      Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; Chu, P. K. Adv. Funct. Mater. 2015, 25, 6996.  doi: 10.1002/adfm.201502902

    41. [41]

      Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H. M.; Dai, J.; Lau, S. P. Adv. Mater. 2015, 27, 3748.  doi: 10.1002/adma.v27.25

    42. [42]

      Smith, J. B.; Hagaman, D.; Ji, H. F. J. Nanotechnol. 2016, 27, 215602.  doi: 10.1088/0957-4484/27/21/215602

    43. [43]

      Shao, R.; Zheng, K.; Zhang, Y.; Li, Y.; Zhang, Z.; Han, X. Appl. Phys. Lett. 2012, 101, 1409.
       

    44. [44]

      Tian, T.; Liu, D.; Zhang, B.; Zhang, D.; Shao, R.; Zheng, K.; Yan, H.; Zhang, Y. Mater. Lett. 2016, 183, 432.  doi: 10.1016/j.matlet.2016.07.091

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    12. [12]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    15. [15]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(152)
  • Abstract views(6367)
  • HTML views(2492)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return