Citation: Zhang Shangxi, Shao Xiangfeng. Flexible TTF Derivatives: Synthesis, Structure and Self-assembly[J]. Acta Chimica Sinica, ;2018, 76(7): 531-536. doi: 10.6023/A18040157 shu

Flexible TTF Derivatives: Synthesis, Structure and Self-assembly

  • Corresponding author: Zhang Shangxi, shangxi_1997@163.com
  • Received Date: 18 April 2018
    Available Online: 29 July 2018

    Fund Project: the National Natural Science Foundation of China 21603093the National Natural Science Foundation of China 21372111the Research and Technology foundation of Jiangxi Provincial Education Department GJJ151112the National Natural Science Foundation of China 21702090Project supported by the Research and Technology foundation of Jiangxi Provincial Education Department (No. GJJ151112) and the National Natural Science Foundation of China (Nos. 21702090, 21603093, 21372111)

Figures(9)

  • Organic electron donors with planar configuration, moderate redox potential and favorable flexibility are the foundation of the molecular material science and self-assembly chemistry. A series of TTF derivatives (TTF1~TTF8) with well molecule flexibility have been synthesized employing a copper-mediated C—S coupling reaction of 1, 2-diiodophenyl groups and a zinc-thiolate complex, (TBA)2[Zn(DMIT)2] (TBA=tetrabutyl ammonium, DMIT=1, 3-dithiole-2-thione-4, 5-dithiolate) as the key step. The physicochemical properties and crystal structures of these TTFs are fully investigated by UV/Vis absorption spectra, cyclic voltammetry, single crystal X-ray diffraction. The ethylenedioxy/ethylenedithio group and sulfur attached phenyl groups lead to unusual properties of TTFs. In comparison with TTF5~TTF8 containing ethylenedithio groups, TTF1~TTF4 substituted by ethylenedioxy groups exhibit stronger absorbance, due to the different electronegative of oxygen and sulfur atom. In addition the absorbance is reducing progressively as the electron donating ability of the respective aryl groups increasing. By introducing fused aryls, the first half redox potential (E1/21) used to estimate the electrochemical stability of different organic electron donors of the TTF derivatives are much higher than that of BEDT-TTF and TTF itself. The aryls ensure the stability of TTF-core via dispersing its electrons. By hot recrystallization or slowly evaporating the solvent, single crystals of eight TTFs suitable for single-crystal X-ray diffraction measurement were obtained. All these TTF derivatives adopt boat conformation with various dihedral angles between the central C2S4 plane with the terminal C2O2 and C2S2 plane of the TTF framework. Complicated aryls leads to larger dihedral angles. TTF5~TTF8 with ethylenedithio groups have more dominant curving configuration with respect to TTF1~TTF4 functionalized by ethylenedioxy groups. Additionally, the stereo-hindrance effects due to the fused phenyl groups prolong the distance from one molecule to another. As a typical example of crystal structure of TTF4, the two methoxy groups make the distance much longer than that in TTF1. Furthermore, the flexible TTFs exhibit unique behavior on self-assembling when the C—S bond vibrate upon and down the TTF-skeleton plane. Single crystals of the complex (TTF4)(C60) are obtained via slowly evaporating chlorobenzene at room temperature after the mixture was heated and refluxed for five minutes. The dihedral angles of TTF4 enlarges to some extent from 24.30° in monomer to 30.17° in complex. Two electron donor molecules produced a cavity and a C60 molecule filled the cavity with C—C and C—S contacts.
  • 加载中
    1. [1]

      Wudl, F.; Smith, G. M.; Hufnagel, E. J. J. Chem. Soc. D Chem. Commun. 1970, 1453.
       

    2. [2]

      (a) Xiao, X.; Xu, W.; Zhang, D.; Xu, H.; Lu, H.; Zhu, D. J. Mater. Chem. 2005, 26, 2557; (b) Canavet, D.; Sall, M.; Zhang, G.; Zhang, D.; Zhu, D. Chem. Commun. 2009, 2245, and references therein.

    3. [3]

      For typical examples of the use of TTF derivatives in sensors, see: (a) Hansen, T. K.; Jø rgensen, T.; Stein, P. C.; Becher, J. J. Org. Chem. 1992, 57, 6403; (b) Jø rgensen, T.; Hansen, T. K.; Becher, J. Chem. Soc. Rev. 1994, 23, 41; (c) Le Derf, F.; Mazari, M.; Mercier, N.; Levillain, E.; Gorgues, A.; Sallé, M.; Richomme, P.; Becher, J.; Garín, J.; Orduna, J. Chem. Commun. 1999, 1417; (d) Johnston, B.; Goldenberg, L. M.; Bryce, M. R.; Kataky, R. J. Chem. Soc. Perkin Trans. 2 2000, 189; (e) Herranz, M. A.; Colonna, B.; Echegoyen, L. Proc. Natl. Acad. Sci. USA 2002, 99, 5040; (f) Li, X.; Zhang, G.; Ma, H.; Zhang, D.; Li, J.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 11543; (g) Lyskawa, J.; Le Derf, F.; Levillain, E.; Mazari, M.; Sallé, M.; Dubois, L.; Viel, P.; Bureau, C.; Palacin, S. J. Am. Chem. Soc. 2004, 126, 12194; (h) Zhang, G.; Li, X.; Ma, H.; Zhang, D.; Li, J.; Zhu, D. Chem. Commun. 2004, 2072; (i) Nielsen, K. A.; Cho, W. S.; Jeppesen, J. O.; Lynch, V. M.; Becher, J.; Sessler, J. L. J. Am. Chem. Soc. 2004, 126, 16296; (j) Wang, Z.; Zhang, D.; Zhu, D. J. Org. Chem. 2005, 70, 5729; (k) Nielsen, K. A.; Cho, W. S.; Lyskawa, J.; Levillain, E.; Lynch, V. M.; Sessler, J. L.; Jeppesen, J. O. J. Am. Chem. Soc. 2006, 128, 2444; (l) Zhao, Y. P.; Wu, L. Z.; Si, G.; Liu, Y.; Xue, H.; Zhang, L. P.; Tung, C. H. J. Org. Chem. 2007, 72, 3632.

    4. [4]

      (a) de Lucas, A. I.; Martán, N.; Sínchez, L.; Seoane, C.; Andreu, R.; Garán, J.; Orduna, J.; Alcalá, R.; Villacampa, B. Tetrahedron 1998, 54, 4655; (b) González, M.; Martín, N.; Segura, J. L.; Garín, J.; Orduna, J. Tetrahedron Lett. 1998, 39, 3269; (c) González, M.; Martín, N.; Segura, J. L.; Seoane, C.; Garín, J.; Orduna, J.; Alcalá, R.; Sánchez, C.; Villacampa, B. Tetrahedron Lett. 1999, 40, 8599; (d) Garín, J.; Ordura, J.; Andreu, R. Recent Res. Dev. Org. Chem. 2001, 5, 77, and references therein.

    5. [5]

      (a) Mas-Torrent, M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. J. Am. Chem. Soc. 2004, 126, 984; (b) Nishida, J.; Ando, S.; Yamaguchi, J.; Itaka, K.; Koinuma, H.; Tada, H.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 10142; (c) Nishida, J.; Kumaki, D.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2006, 128, 9598; (d) Gao, X.; Wang, Y.; Yang, X.; Liu, Y.; Qiu, W.; Wu, W.; Zhang, H.; Qi, T.; Liu, Y.; Lu, K.; Du, C.; Shuai, Z.; Yu, G.; Zhu, D. Adv. Mater. 2007, 19, 3037; (e) Gao, X.; Wu, W.; Liu, Y.; Jiao, S.; Qiu, W.; Wang, L.; Zhu, D. J. Mater. Chem. 2007, 17, 736; (f) Yang, G.; Di, C.; Zhang, G.; Zhang, J.; Xiang, J.; Zhang, D.; Zhu, D. Adv. Funct. Mater. 2013, 23, 1671; (g) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313; (h) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489; (i) Mas-Torrent, M.; Rovira, C. Chem. Rev. 2011, 111, 4833; (j) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.

    6. [6]

      (a) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277; (b) Metzger, R. M. J. Mater. Chem. 1999, 9, 2027; (c) Scheib, S.; Cava, M. P.; Baldwin, J. W.; Metzger, R. M. J. Org. Chem. 1998, 63, 1198; (d) Ho, G.; Heath, J. R.; Kondratenko, M.; Perepichka, D. F.; Arseneault, K.; Pézolet, M.; Bryce, M. R. Chem. Eur. J. 2005, 11, 2914.

    7. [7]

      (a) Xiao, X.; Hayashi, T.; Fujiwara, H.; Sugimoto, T.; Noguchi, S.; Weng, Y.; Yoshino, H.; Murata, K.; Katari, H. J. Am. Chem. Soc. 2007, 129, 12618; (b) Shao, X.; Nakano, Y.; Sakata, M.; Yamochi, H.; Yoshida, Y.; Maesato, M.; Uruichi, M.; Yakushi, K.; Murata, T.; Otsuka, A.; Saito, G.; Koshihara, S.; Tanaka, K. Chem. Mater. 2008, 20, 7551.

    8. [8]

      (a) Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2016, 4, 7416; (b) Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854. (c) Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.

    9. [9]

      (a) Berridge, R.; Skabara, P. J.; Pozo-Gonzalo, C.; Kanibolotsky, A.; Lohr, J.; McDouall, J. J. W.; McInnes, E. J. L.; Wolowska, J.; Winder, C.; Sariciftci, N. S.; Harrington, R. W.; Clegg, W. J. Phys. Chem. B 2006, 110, 3140; (b) Martín, N.; Sánchez, L.; Herranz, M. A.; Illescas, B.; Guldi, D. M. Acc. Chem. Res. 2007, 40, 1015, and references therein.

    10. [10]

      Zhang, J.; Jiang, M.; Xing, L.; Qin, K.; Liu, T.; Zhou, J.; Si, W.; Cui, H.; Zhou, S. Chin. J. Chem. 2016, 34, 46.  doi: 10.1002/cjoc.201500656

    11. [11]

      (a) Mitamura, Y.; Yorimitsu, H.; Oshima, K.; Osuka, A. Chem. Sci. 2011, 2, 2017; (b) Lincke, K.; Frellsen, A. F.; Parker, C. R.; Bond, A. D.; Hammerich, O.; Nielsen, M. B. Angew. Chem. 2012, 124, 6203. Angew. Chem. Int. Ed. 2012, 51, 6099; (c) Ueno, R.; Fujino, D.; Yorimitsu, H.; Osuka, A. Chem. Eur. J. 2013, 19, 7156.

    12. [12]

      Zhao, B.; Tao, J.; Chen, X.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 1964.  doi: 10.6023/cjoc201702002

    13. [13]

      (a) Kim, C.; Lee, S. J.; Lee, H. Chem. Mater. 2003, 15, 3638; (b) Stellacci, F.; Bauer, C. A.; Meyer-Friedrichsen, T. J. Am. Chem. Soc. 2003, 125, 328.

    14. [14]

      (a) Kryschenko, Y. K.; Seidel, S. R.; Muddiman, D. C. J. Am. Chem. Soc. 2003, 125, 9647; (b) Zhang, Y.; Li, J.; Chen, J.; Su, Q.; Deng, W.; Nishiura, M.; Imamoto, T.; Wu, X.; Wang, Q. Inorg. Chem. 2000, 39, 2330.

    15. [15]

      (a) Narita, M.; Pittman, C. U. Synthesis 1976, 8, 489; (b) Krief, A. Tetrahedron 1986, 42, 1204; (c) Fabre, J. M. Chem. Rev. 2004, 104, 5133.

    16. [16]

      Sun, J.; Lu, X.; Shao, J.; Cui, Z.; Shao, Y.; Jiang, G.; Yu, W.; Shao, X. RSC Adv. 2013, 3, 10193.  doi: 10.1039/c3ra41349g

    17. [17]

      (a) Horiuchi, S.; Yamochi, H.; Saito, G.; Sakaguchi, K.; Kusunoki, M. J. Am. Chem. Soc. 1996, 118, 8604; (b) Collet, M.; Guerin, L.; Uchida, N.; Fukuya, S.; Shimoda, H.; Ishiguro, T.; Matsuda, K.; Hasegawa, T.; Ota, A.; Yamochi, H.; Saito, G.; Tazaki, R.; Adachi, S.; koshihara, S. Science 2005, 307, 86.

    18. [18]

      CCDC number: 1829987-1829990, 1830217, 1830219-1830221.

    19. [19]

      Bondi, A. J. Phys. Chem. 1964, 68, 441.  doi: 10.1021/j100785a001

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    15. [15]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Fuxian Wan Ying Li Yuanhong Zhang Shuhua Zhu Jing Xu Yanfang Wang Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041

Metrics
  • PDF Downloads(16)
  • Abstract views(1493)
  • HTML views(347)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return