Citation: Zhang Shangxi, Shao Xiangfeng. Flexible TTF Derivatives: Synthesis, Structure and Self-assembly[J]. Acta Chimica Sinica, ;2018, 76(7): 531-536. doi: 10.6023/A18040157 shu

Flexible TTF Derivatives: Synthesis, Structure and Self-assembly

  • Corresponding author: Zhang Shangxi, shangxi_1997@163.com
  • Received Date: 18 April 2018
    Available Online: 29 July 2018

    Fund Project: the National Natural Science Foundation of China 21603093the National Natural Science Foundation of China 21372111the Research and Technology foundation of Jiangxi Provincial Education Department GJJ151112the National Natural Science Foundation of China 21702090Project supported by the Research and Technology foundation of Jiangxi Provincial Education Department (No. GJJ151112) and the National Natural Science Foundation of China (Nos. 21702090, 21603093, 21372111)

Figures(9)

  • Organic electron donors with planar configuration, moderate redox potential and favorable flexibility are the foundation of the molecular material science and self-assembly chemistry. A series of TTF derivatives (TTF1~TTF8) with well molecule flexibility have been synthesized employing a copper-mediated C—S coupling reaction of 1, 2-diiodophenyl groups and a zinc-thiolate complex, (TBA)2[Zn(DMIT)2] (TBA=tetrabutyl ammonium, DMIT=1, 3-dithiole-2-thione-4, 5-dithiolate) as the key step. The physicochemical properties and crystal structures of these TTFs are fully investigated by UV/Vis absorption spectra, cyclic voltammetry, single crystal X-ray diffraction. The ethylenedioxy/ethylenedithio group and sulfur attached phenyl groups lead to unusual properties of TTFs. In comparison with TTF5~TTF8 containing ethylenedithio groups, TTF1~TTF4 substituted by ethylenedioxy groups exhibit stronger absorbance, due to the different electronegative of oxygen and sulfur atom. In addition the absorbance is reducing progressively as the electron donating ability of the respective aryl groups increasing. By introducing fused aryls, the first half redox potential (E1/21) used to estimate the electrochemical stability of different organic electron donors of the TTF derivatives are much higher than that of BEDT-TTF and TTF itself. The aryls ensure the stability of TTF-core via dispersing its electrons. By hot recrystallization or slowly evaporating the solvent, single crystals of eight TTFs suitable for single-crystal X-ray diffraction measurement were obtained. All these TTF derivatives adopt boat conformation with various dihedral angles between the central C2S4 plane with the terminal C2O2 and C2S2 plane of the TTF framework. Complicated aryls leads to larger dihedral angles. TTF5~TTF8 with ethylenedithio groups have more dominant curving configuration with respect to TTF1~TTF4 functionalized by ethylenedioxy groups. Additionally, the stereo-hindrance effects due to the fused phenyl groups prolong the distance from one molecule to another. As a typical example of crystal structure of TTF4, the two methoxy groups make the distance much longer than that in TTF1. Furthermore, the flexible TTFs exhibit unique behavior on self-assembling when the C—S bond vibrate upon and down the TTF-skeleton plane. Single crystals of the complex (TTF4)(C60) are obtained via slowly evaporating chlorobenzene at room temperature after the mixture was heated and refluxed for five minutes. The dihedral angles of TTF4 enlarges to some extent from 24.30° in monomer to 30.17° in complex. Two electron donor molecules produced a cavity and a C60 molecule filled the cavity with C—C and C—S contacts.
  • 加载中
    1. [1]

      Wudl, F.; Smith, G. M.; Hufnagel, E. J. J. Chem. Soc. D Chem. Commun. 1970, 1453.
       

    2. [2]

      (a) Xiao, X.; Xu, W.; Zhang, D.; Xu, H.; Lu, H.; Zhu, D. J. Mater. Chem. 2005, 26, 2557; (b) Canavet, D.; Sall, M.; Zhang, G.; Zhang, D.; Zhu, D. Chem. Commun. 2009, 2245, and references therein.

    3. [3]

      For typical examples of the use of TTF derivatives in sensors, see: (a) Hansen, T. K.; Jø rgensen, T.; Stein, P. C.; Becher, J. J. Org. Chem. 1992, 57, 6403; (b) Jø rgensen, T.; Hansen, T. K.; Becher, J. Chem. Soc. Rev. 1994, 23, 41; (c) Le Derf, F.; Mazari, M.; Mercier, N.; Levillain, E.; Gorgues, A.; Sallé, M.; Richomme, P.; Becher, J.; Garín, J.; Orduna, J. Chem. Commun. 1999, 1417; (d) Johnston, B.; Goldenberg, L. M.; Bryce, M. R.; Kataky, R. J. Chem. Soc. Perkin Trans. 2 2000, 189; (e) Herranz, M. A.; Colonna, B.; Echegoyen, L. Proc. Natl. Acad. Sci. USA 2002, 99, 5040; (f) Li, X.; Zhang, G.; Ma, H.; Zhang, D.; Li, J.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 11543; (g) Lyskawa, J.; Le Derf, F.; Levillain, E.; Mazari, M.; Sallé, M.; Dubois, L.; Viel, P.; Bureau, C.; Palacin, S. J. Am. Chem. Soc. 2004, 126, 12194; (h) Zhang, G.; Li, X.; Ma, H.; Zhang, D.; Li, J.; Zhu, D. Chem. Commun. 2004, 2072; (i) Nielsen, K. A.; Cho, W. S.; Jeppesen, J. O.; Lynch, V. M.; Becher, J.; Sessler, J. L. J. Am. Chem. Soc. 2004, 126, 16296; (j) Wang, Z.; Zhang, D.; Zhu, D. J. Org. Chem. 2005, 70, 5729; (k) Nielsen, K. A.; Cho, W. S.; Lyskawa, J.; Levillain, E.; Lynch, V. M.; Sessler, J. L.; Jeppesen, J. O. J. Am. Chem. Soc. 2006, 128, 2444; (l) Zhao, Y. P.; Wu, L. Z.; Si, G.; Liu, Y.; Xue, H.; Zhang, L. P.; Tung, C. H. J. Org. Chem. 2007, 72, 3632.

    4. [4]

      (a) de Lucas, A. I.; Martán, N.; Sínchez, L.; Seoane, C.; Andreu, R.; Garán, J.; Orduna, J.; Alcalá, R.; Villacampa, B. Tetrahedron 1998, 54, 4655; (b) González, M.; Martín, N.; Segura, J. L.; Garín, J.; Orduna, J. Tetrahedron Lett. 1998, 39, 3269; (c) González, M.; Martín, N.; Segura, J. L.; Seoane, C.; Garín, J.; Orduna, J.; Alcalá, R.; Sánchez, C.; Villacampa, B. Tetrahedron Lett. 1999, 40, 8599; (d) Garín, J.; Ordura, J.; Andreu, R. Recent Res. Dev. Org. Chem. 2001, 5, 77, and references therein.

    5. [5]

      (a) Mas-Torrent, M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. J. Am. Chem. Soc. 2004, 126, 984; (b) Nishida, J.; Ando, S.; Yamaguchi, J.; Itaka, K.; Koinuma, H.; Tada, H.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 10142; (c) Nishida, J.; Kumaki, D.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2006, 128, 9598; (d) Gao, X.; Wang, Y.; Yang, X.; Liu, Y.; Qiu, W.; Wu, W.; Zhang, H.; Qi, T.; Liu, Y.; Lu, K.; Du, C.; Shuai, Z.; Yu, G.; Zhu, D. Adv. Mater. 2007, 19, 3037; (e) Gao, X.; Wu, W.; Liu, Y.; Jiao, S.; Qiu, W.; Wang, L.; Zhu, D. J. Mater. Chem. 2007, 17, 736; (f) Yang, G.; Di, C.; Zhang, G.; Zhang, J.; Xiang, J.; Zhang, D.; Zhu, D. Adv. Funct. Mater. 2013, 23, 1671; (g) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313; (h) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489; (i) Mas-Torrent, M.; Rovira, C. Chem. Rev. 2011, 111, 4833; (j) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.

    6. [6]

      (a) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277; (b) Metzger, R. M. J. Mater. Chem. 1999, 9, 2027; (c) Scheib, S.; Cava, M. P.; Baldwin, J. W.; Metzger, R. M. J. Org. Chem. 1998, 63, 1198; (d) Ho, G.; Heath, J. R.; Kondratenko, M.; Perepichka, D. F.; Arseneault, K.; Pézolet, M.; Bryce, M. R. Chem. Eur. J. 2005, 11, 2914.

    7. [7]

      (a) Xiao, X.; Hayashi, T.; Fujiwara, H.; Sugimoto, T.; Noguchi, S.; Weng, Y.; Yoshino, H.; Murata, K.; Katari, H. J. Am. Chem. Soc. 2007, 129, 12618; (b) Shao, X.; Nakano, Y.; Sakata, M.; Yamochi, H.; Yoshida, Y.; Maesato, M.; Uruichi, M.; Yakushi, K.; Murata, T.; Otsuka, A.; Saito, G.; Koshihara, S.; Tanaka, K. Chem. Mater. 2008, 20, 7551.

    8. [8]

      (a) Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2016, 4, 7416; (b) Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854. (c) Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.

    9. [9]

      (a) Berridge, R.; Skabara, P. J.; Pozo-Gonzalo, C.; Kanibolotsky, A.; Lohr, J.; McDouall, J. J. W.; McInnes, E. J. L.; Wolowska, J.; Winder, C.; Sariciftci, N. S.; Harrington, R. W.; Clegg, W. J. Phys. Chem. B 2006, 110, 3140; (b) Martín, N.; Sánchez, L.; Herranz, M. A.; Illescas, B.; Guldi, D. M. Acc. Chem. Res. 2007, 40, 1015, and references therein.

    10. [10]

      Zhang, J.; Jiang, M.; Xing, L.; Qin, K.; Liu, T.; Zhou, J.; Si, W.; Cui, H.; Zhou, S. Chin. J. Chem. 2016, 34, 46.  doi: 10.1002/cjoc.201500656

    11. [11]

      (a) Mitamura, Y.; Yorimitsu, H.; Oshima, K.; Osuka, A. Chem. Sci. 2011, 2, 2017; (b) Lincke, K.; Frellsen, A. F.; Parker, C. R.; Bond, A. D.; Hammerich, O.; Nielsen, M. B. Angew. Chem. 2012, 124, 6203. Angew. Chem. Int. Ed. 2012, 51, 6099; (c) Ueno, R.; Fujino, D.; Yorimitsu, H.; Osuka, A. Chem. Eur. J. 2013, 19, 7156.

    12. [12]

      Zhao, B.; Tao, J.; Chen, X.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 1964.  doi: 10.6023/cjoc201702002

    13. [13]

      (a) Kim, C.; Lee, S. J.; Lee, H. Chem. Mater. 2003, 15, 3638; (b) Stellacci, F.; Bauer, C. A.; Meyer-Friedrichsen, T. J. Am. Chem. Soc. 2003, 125, 328.

    14. [14]

      (a) Kryschenko, Y. K.; Seidel, S. R.; Muddiman, D. C. J. Am. Chem. Soc. 2003, 125, 9647; (b) Zhang, Y.; Li, J.; Chen, J.; Su, Q.; Deng, W.; Nishiura, M.; Imamoto, T.; Wu, X.; Wang, Q. Inorg. Chem. 2000, 39, 2330.

    15. [15]

      (a) Narita, M.; Pittman, C. U. Synthesis 1976, 8, 489; (b) Krief, A. Tetrahedron 1986, 42, 1204; (c) Fabre, J. M. Chem. Rev. 2004, 104, 5133.

    16. [16]

      Sun, J.; Lu, X.; Shao, J.; Cui, Z.; Shao, Y.; Jiang, G.; Yu, W.; Shao, X. RSC Adv. 2013, 3, 10193.  doi: 10.1039/c3ra41349g

    17. [17]

      (a) Horiuchi, S.; Yamochi, H.; Saito, G.; Sakaguchi, K.; Kusunoki, M. J. Am. Chem. Soc. 1996, 118, 8604; (b) Collet, M.; Guerin, L.; Uchida, N.; Fukuya, S.; Shimoda, H.; Ishiguro, T.; Matsuda, K.; Hasegawa, T.; Ota, A.; Yamochi, H.; Saito, G.; Tazaki, R.; Adachi, S.; koshihara, S. Science 2005, 307, 86.

    18. [18]

      CCDC number: 1829987-1829990, 1830217, 1830219-1830221.

    19. [19]

      Bondi, A. J. Phys. Chem. 1964, 68, 441.  doi: 10.1021/j100785a001

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(13)
  • Abstract views(1395)
  • HTML views(320)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return