Citation: Li Cui, Zhang Qi, Fu Yao. Transition Metal Catalyzed Deoxydehydration of Alcohols[J]. Acta Chimica Sinica, ;2018, 76(7): 501-514. doi: 10.6023/A18040138 shu

Transition Metal Catalyzed Deoxydehydration of Alcohols

  • Corresponding author: Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 9 April 2018
    Available Online: 14 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21325208, 21572212, 21732006, 21702041), Ministry of Science and Technology of China (No. 2017YFA0303500), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), Fundamental Research Funds for the Central Universities, and Program for Changjiang Scholars and Innovative Research Team in Universitythe National Natural Science Foundation of China 21572212the National Natural Science Foundation of China 21325208the National Natural Science Foundation of China 21702041the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21732006Ministry of Science and Technology of China 2017YFA0303500

Figures(41)

  • In view of the depletion of fossil fuels, the development and utilization of environment-friendly and sustainable resources widely play an indispensable role in alleviating and resolving problems about resources and environment. Biomass could be utilized as biofuels and renewable platform chemicals. However, biomass-derived molecules are fairly oxygen-rich and hyperfunctionalized. Therefore, new synthetic routes for the regenerative production of chemicals, fuels, and energy from renewable biomass sources are currently investigated especially the routes of transforming high-oxygen-content biomassderived vicinal diols and poly vicinal alcohols into fuels and value-added chemicals. A range of reductive deoxygenation methods consisting of direct deoxygenation, pyrolysis, hydrogenolysis, decarbonylation, decarboxylation, hydrodeoxygenation, and deoxydehydration (DODH) are under investigation. In this review, we detail the recent-evolutionary and efficient strategies of transition metal-catalyzed DODH of vicinal diols into corresponding alkenes, including rhenium, molybdenum, vanadium, and ruthenium catalysts. Rhenium-catalyzed DODH reactions are very selective and active to provide high yields of olefin products, which keep important functionality in place as well as can be readily functionalized. Recent efforts in rhenium-mediated systems include the development of new rhenium catalysts, the application of cheaper and more available reductants, and growing mechanistic understandings owing to both theoretical and experimental studies. A new emerging trend within DODH is the development of heterogeneous rhenium-based catalysts which demonstrates their ability to rival and in some cases surpass their homogeneous counterparts. Furthermore, catalysts based on the transition metals molybdenum, vanadium and ruthenium show great potential as inexpensive alternatives to rhenium catalysts.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294.  doi: 10.1038/nature11475

    2. [2]

      Bruijnincx, P. C. A.; Weckhuysen, B. M. Angew. Chem. Int. Ed. 2013, 52, 11980.  doi: 10.1002/anie.201305058

    3. [3]

      Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese).
       

    4. [4]

      Mohr, S. H.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Fuel 2015, 141, 120.  doi: 10.1016/j.fuel.2014.10.030

    5. [5]

      Sheldon, R. A. Green Chem. 2017, 19, 18.  doi: 10.1039/C6GC02157C

    6. [6]

      Zhao, C.; Ma, Y.; Wang, Y.; Zhou, X.; Li, H.; Li, M.; Song, Y. Acta Chim. Sinica 2018, 76, 9(in Chinese).
       

    7. [7]

      Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.  doi: 10.1021/cr050989d

    8. [8]

      Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.  doi: 10.1039/c004654j

    9. [9]

      Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827.  doi: 10.1021/cr4002269

    10. [10]

      Wang, Y.; Hu, M.; Wang, Y.; Qin, Y.; Chen, H.; Zeng, L.; Lei, J.; Huang, X.; He, L.; Zhang, R.; Wu, Z. Acta Chim. Sinica 2016, 74, 356(in Chinese).
       

    11. [11]

      Ding, S.; Ge, Q.; Zhu, X. Acta Chim. Sinica 2017, 75, 439(in Chinese).
       

    12. [12]

      Wang, H.; Zhao, Y.; Wang, C.; Fu, Y.; Guo, Q. Acta Chim. Sinica 2009, 67, 893(in Chinese).
       

    13. [13]

      Jiang, Y.; Yu, H.; Fu, Y. Acta Chim. Sinica 2013, 71, 1611(in Chinese).
       

    14. [14]

      Lian, Y.; Yan, L.; Wang, Y.; Qi, X. Acta Chim. Sinica 2014, 72, 502(in Chinese).
       

    15. [15]

      Zhang, X.; Wilson, K.; Lee, A. F. Chem. Rev. 2016, 116, 12328.  doi: 10.1021/acs.chemrev.6b00311

    16. [16]

      Liu, X.; Yan, L.; Fu, Y. Acta Chim. Sinica 2017, 75, 788(in Chinese).
       

    17. [17]

      Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. Angew. Chem. Int. Ed. 2007, 46, 4434.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Vennestrøm, P. N. R.; Osmundsen, C. M.; Christensen, C. H.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502.  doi: 10.1002/anie.201102117

    19. [19]

      Serrano-Ruiz, J. C.; Luque, R.; Sepúlveda-Escribano, A. Chem. Soc. Rev. 2011, 40, 5266.  doi: 10.1039/c1cs15131b

    20. [20]

      Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.  doi: 10.1039/C1CS15147A

    21. [21]

      Sullivan, R. J.; Latifi, E.; Chung, B. K.-M.; Soldatov, D. V.; Schlaf, M. Chem. Rev. 2014, 114, 1827.  doi: 10.1021/cr4002269

    22. [22]

      Yan, L.; Pang, H.; Huang, Y.; Fu, Y. Acta Chim. Sinica 2014, 72, 1005(in Chinese).
       

    23. [23]

      Li, J.; Huang, Y.; Guo, Q.; Fu, Y. Acta Chim. Sinica 2014, 72, 1223(in Chinese).
       

    24. [24]

      Zhao, Y.; Deng, L.; Liao, B.; Fu, Y.; Guo, Q. Energy Fuels 2010, 24, 5735.  doi: 10.1021/ef100896q

    25. [25]

      Zhao, Y.; Fu, Y.; Guo, Q. Bioresour. Technol. 2012, 114, 740.  doi: 10.1016/j.biortech.2012.03.057

    26. [26]

      Zhao, Y.; Pan, T.; Zuo, Y.; Guo, Q.; Fu, Y. Bioresour. Technol. 2013, 147, 37.  doi: 10.1016/j.biortech.2013.07.068

    27. [27]

      Xu, L.; Zhang, Y.; Fu, Y. Energy Technol. 2016, 4, 1.  doi: 10.1002/ente.201500354

    28. [28]

      Lai, D.; Deng, L.; Guo, Q.; Fu, Y. Energy Environ. Sci. 2011, 4, 3552.  doi: 10.1039/c1ee01526e

    29. [29]

      Zuo, Y.; Zhang, Y.; Fu, Y. ChemCatChem 2014, 6, 753.  doi: 10.1002/cctc.201300956

    30. [30]

      Ruppert, A. M.; Weinberg, K.; Palkovits, R. Angew. Chem. Int. Ed. 2012, 51, 2564.  doi: 10.1002/anie.201105125

    31. [31]

      Maetani, S.; Fukuyama, T.; Suzuki, N.; Ishihara, D.; Ryu, I. Chem. Commun. 2012, 48, 2552.  doi: 10.1039/c2cc18093f

    32. [32]

      Huang, Y.; Yang, Z.; Chen, M.; Dai, J.; Guo, Q.; Fu, Y. ChemSusChem 2013, 6, 1348.  doi: 10.1002/cssc.201300190

    33. [33]

      Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B. C.; Rahimpou, M. R. Energy Environ. Sci. 2014, 7, 103.  doi: 10.1039/C3EE43081B

    34. [34]

      Chen, M.; Huang, Y.; Pang, H.; Liu, X.; Fu, Y. Green Chem. 2015, 17, 1710.  doi: 10.1039/C4GC01992J

    35. [35]

      Xu, G.; Guo, J.; Qu, Y.; Zhang, Y.; Fu, Y.; Guo, Q. Green Chem. 2016, 18, 5510.  doi: 10.1039/C6GC01097K

    36. [36]

      Li, J.; Liu, J.; Liu, H.; Xu, G.; Zhang, J.; Liu, J.; Zhou, G.; Li, Q.; Xu, Z.; Fu, Y. ChemSusChem 2017, 10, 1436.  doi: 10.1002/cssc.v10.7

    37. [37]

      Liu, X.; Jia, W.; Xu, G.; Zhang, Y.; Fu, Y. ACS Sustainable Chem. Eng. 2017, 5, 8594.  doi: 10.1021/acssuschemeng.7b01047

    38. [38]

      Korstanje, T. J.; Klein Gebbink, R. J. M. Top. Organomet. Chem. 2012, 39, 129.  doi: 10.1007/978-3-642-28288-1

    39. [39]

      Dutta, S. ChemSusChem 2012, 5, 2125.  doi: 10.1002/cssc.v5.11

    40. [40]

      Metzger, J. O. ChemCatChem 2013, 5, 680.  doi: 10.1002/cctc.201200796

    41. [41]

      Boucher-Jacobs, C.; Nicholas, K. M. Top. Curr. Chem. 2014, 353, 163.  doi: 10.1007/978-3-319-08654-5

    42. [42]

      Mika, L. T.; Cséfalvay, E.; Horváth, I. T. Catal. Today 2015, 247, 33.  doi: 10.1016/j.cattod.2014.10.043

    43. [43]

      Harms, R. G.; Herrmann, W. A.; Kühn, F. E. Coord. Chem. Rev. 2015, 296, 1.  doi: 10.1016/j.ccr.2015.03.015

    44. [44]

      Nicholas, K. M. J. Org. Chem. 2015, 80, 6943.  doi: 10.1021/acs.joc.5b00982

    45. [45]

      Makshina, E. V.; Dusselier, M.; Janssens, W.; Jan Degreve, J.; Jacobs, P. A.; Sels, B. F. Chem. Soc. Rev. 2014, 43, 7917.  doi: 10.1039/C4CS00105B

    46. [46]

      Raju, S.; Moret, M. E.; Klein Gebbink, R. J. M. ACS Catal. 2015, 5, 281.  doi: 10.1021/cs501511x

    47. [47]

      Mao, G. L.; Jia, B.; Wang, C. Y. Chin. J. Org. Chem. 2015, 35, 284(in Chinese).
       

    48. [48]

      Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8, 767.  doi: 10.1002/cssc.v8.5

    49. [49]

      Petersen, A. R.; Fristrup, P. Chem.-Eur. J. 2017, 23, 10235.  doi: 10.1002/chem.v23.43

    50. [50]

      Romao, C. C.; Kuhn, F. E.; Herrmann, W. A. Chem. Rev. 1997, 97, 3197.  doi: 10.1021/cr9703212

    51. [51]

      Herrmann, W. A.; Kühn, F. E. Acc. Chem. Res. 1997, 30, 169.  doi: 10.1021/ar9601398

    52. [52]

      Wang, F.; Gao, K.; Wang, C. Acta Chim. Sinica 2007, 65, 2211(in Chinese).
       

    53. [53]

      Chen, J.; Du, X.; Yu, T.; Zeng, Y.; Zhang, X.; Li, Y. Acta Chim. Sinica 2016, 74, 523(in Chinese).
       

    54. [54]

      Abu-Omar, M. M.; Appelman, E. H.; Espenson, J. H. Inorg. Chem. 1996, 35, 7751.  doi: 10.1021/ic960701q

    55. [55]

      Gable, K. P. Adv. Organomet. Chem. 1997, 41, 127.  doi: 10.1016/S0065-3055(08)60438-4

    56. [56]

      Espenson, J. H. Adv. Inorg. Chem. 2003, 54, 157.  doi: 10.1016/S0898-8838(03)54003-X

    57. [57]

      Kühn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem. 2004, 689, 4149.  doi: 10.1016/j.jorganchem.2004.08.018

    58. [58]

      Korstanje, T. J.; Jastrzebski, J. T. B. H.; Klein Gebbink, R. J. M. Chem.-Eur. J. 2013, 19, 13224.  doi: 10.1002/chem.v19.39

    59. [59]

      Korstanje, T. J.; de Waard, E. F.; Jastrzebski, J. T. B. H.; Klein Gebbink, R. J. M. ACS Catal. 2012, 2, 2173.  doi: 10.1021/cs300455w

    60. [60]

      Herrmann, W. A.; Marz, D.; Herdtweck, E.; Schiifer, A.; Wagner, W.; Kneuper, H. J. Angew. Chem. Int. Ed. 1987, 26, 462.  doi: 10.1002/(ISSN)1521-3773

    61. [61]

      Gable, K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833.  doi: 10.1021/ja00082a002

    62. [62]

      Gable, K. P. Organometallics 1994, 13, 2486.  doi: 10.1021/om00018a048

    63. [63]

      Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118, 9448.  doi: 10.1021/ja9620604

    64. [64]

      Gable, K. P. ; Ross, B. ACS Symposium Series, Vol. 921, Eds. : Bozell, J. J. ; Patel, M. K. American Chemical Society, Washington, DC, 2006, Chapter 11.

    65. [65]

      Bergman, R. G.; Cundari, T. R.; Gillespie, A. M.; Gunnoe, T. B.; Harman, W. D.; Klinckman, T. R.; Temple, M. D.; White, D. P. Organometallics 2003, 22, 2331.  doi: 10.1021/om021048j

    66. [66]

      Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.; Klein Gebbink, R. J. M. ChemSusChem 2013, 6, 1673.  doi: 10.1002/cssc.201300364

    67. [67]

      Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.; Witteman, L.; Dethlefsen, J. R.; Fristrup, P.; Moret, M. E.; Klein Gebbink, R. J. M. Inorg. Chem. 2015, 54, 11031.  doi: 10.1021/acs.inorgchem.5b02366

    68. [68]

      Raju, S.; van Slagmaat, C. A. M. R.; Li, J.; Lutz, M.; Jastrzebski, J. T. B. H.; Moret, M. E.; Klein Gebbink, R. J. M. Organometallics 2016, 35, 2178.  doi: 10.1021/acs.organomet.6b00120

    69. [69]

      Yanagi, T.; Suzuki, H.; Oishi, M. Chem. Lett. 2013, 42, 1403.  doi: 10.1246/cl.130699

    70. [70]

      Shimogawa, R.; Takao, T.; Suzuki, H. Organometallics 2014, 33, 289.  doi: 10.1021/om401035y

    71. [71]

      Sun, H. M.; Hu, C.; Hao, Z. M.; Zuo, Y. J.; Wang, T. C.; Zhong, C. M. Chin. J. Org. Chem. 2015, 35, 1904(in Chinese).
       

    72. [72]

      Hillea, C.; Kühn, F. E. Dalton Trans. 2016, 45, 15.  doi: 10.1039/C5DT03641K

    73. [73]

      Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg. Chem. 2009, 48, 9998.  doi: 10.1021/ic901792b

    74. [74]

      Bi, S. W.; Wang, J. Y.; Liu, L. J.; Li, P.; Lin, Z. Y. Organometallics 2012, 31, 6139.  doi: 10.1021/om300485w

    75. [75]

      Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139, 14001.  doi: 10.1021/jacs.7b07801

    76. [76]

      Ahmad, I.; Chapman, G.; Nicholas, K. M. Inorg. Chem. 2010, 49, 4744.  doi: 10.1021/ic100467p

    77. [77]

      Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Organometallics 2011, 30, 2810.  doi: 10.1021/om2001662

    78. [78]

      Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2010, 132, 11408.  doi: 10.1021/ja103436v

    79. [79]

      Sousa, S. C.; Fernandes, A. C. Tetrahedron Lett. 2011, 52, 6960.  doi: 10.1016/j.tetlet.2011.10.085

    80. [80]

      Yi, J.; Liu, S.; Abu-Omar, M. M. ChemSusChem 2012, 5, 1401.  doi: 10.1002/cssc.v5.8

    81. [81]

      Canale, V.; Tonucci, L.; Bressana, M.; d'Alessandro, N. Catal. Sci. Technol. 2014, 4, 3697.  doi: 10.1039/C4CY00631C

    82. [82]

      Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2012, 51, 8082.  doi: 10.1002/anie.v51.32

    83. [83]

      Qu, S. L.; Dang, Y. F.; Wen, M. W.; Wang, Z. X. Chem.-Eur. J. 2013, 19, 3827.  doi: 10.1002/chem.201204001

    84. [84]

      Boucher-Jacobs, C.; Nicholas, K. M. ChemSusChem 2013, 6, 597.  doi: 10.1002/cssc.201200781

    85. [85]

      Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2013, 52, 12905.  doi: 10.1002/anie.201307564

    86. [86]

      Wang, G.; Jimtaisong, A.; Luck, R. L. Organometallics 2004, 23, 4522.  doi: 10.1021/om049669v

    87. [87]

      Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842.  doi: 10.1021/ja044054a

    88. [88]

      Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813.  doi: 10.1021/jo061436l

    89. [89]

      Herrmann, A. T.; Saito, T.; Stivala, C. E.; Tom, J.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962.  doi: 10.1021/ja101673v

    90. [90]

      Davis, J.; Srivastava, R. S. Tetrahedron Lett. 2014, 55, 4178.  doi: 10.1016/j.tetlet.2014.05.044

    91. [91]

      Li, X. K.; Wu, D.; Lu, T.; Yi, G. S.; Su, H. B.; Zhang, Y. G. Angew. Chem. Int. Ed. 2014, 53, 4200.  doi: 10.1002/anie.201310991

    92. [92]

      Shin, N.; Kwon, S.; Moon, S.; Hong, C. H.; Kim, Y. G. Tetrahedron 2017, 73, 4758.  doi: 10.1016/j.tet.2017.06.053

    93. [93]

      McClain, J. M.; Nicholas, K. M. ACS Catal. 2014, 4, 2109.  doi: 10.1021/cs500461v

    94. [94]

      Boucher-Jacobs, C.; Nicholas, K. M. Organometallics 2015, 34, 1985.  doi: 10.1021/acs.organomet.5b00226

    95. [95]

      Arterburn, J. B.; Liu, M.; Perry, M. C. Helv. Chim. Acta 2002, 85, 3225.  doi: 10.1002/1522-2675(200210)85:10<3225::AID-HLCA3225>3.0.CO;2-H

    96. [96]

      Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5, 3567.  doi: 10.1002/cctc.201300545

    97. [97]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Angew. Chem. Int. Ed. 2015, 54, 1897.  doi: 10.1002/anie.201410352

    98. [98]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 3213.  doi: 10.1021/acscatal.6b00491

    99. [99]

      Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 6393.  doi: 10.1021/acscatal.6b01864

    100. [100]

      Sandbrink, L.; Klindtworth, E.; Islam, H.; Beale, A. M.; Palkovits, R. ACS Catal. 2016, 6, 677.  doi: 10.1021/acscatal.5b01936

    101. [101]

      Li, X. K.; Zhang, Y. G. ChemSusChem 2016, 9, 2774.  doi: 10.1002/cssc.201600865

    102. [102]

      Hills, L.; Moyano, R.; Montilla, F.; Pastor, A.; Galindo, A.; Álvarez, E.; Marchetti, F.; Pettinari, C. Eur. J. Inorg. Chem. 2013, 3352.
       

    103. [103]

      Dethlefsen, J. R.; Lupp, D.; Oh, B. C.; Fristrup, P. ChemSusChem 2014, 7, 425.  doi: 10.1002/cssc.201300945

    104. [104]

      Lupp, D.; Christensen, N. J.; Dethlefsen, J. R.; Fristrup, P. Chem.-Eur. J. 2015, 21, 3435.  doi: 10.1002/chem.v21.8

    105. [105]

      Dethlefsen, J. R.; Lupp, D.; Teshome, A.; Nielsen, L. B.; Fristrup, P. ACS Catal. 2015, 5, 3638.  doi: 10.1021/acscatal.5b00427

    106. [106]

      Beckerle, K.; Sauer, A.; Spaniol, T. P.; Okuda, J. Polyhedron 2016, 116, 105.  doi: 10.1016/j.poly.2016.03.053

    107. [107]

      Sandbrink, L.; Beckerle, K.; Meiners, I.; Liffmann, R.; Rahimi, K.; Okuda, J.; Palkovits, R. ChemSusChem 2017, 10, 1375.  doi: 10.1002/cssc.v10.7

    108. [108]

      Chapman Jr., G.; Kenneth, M.; Nicholas, K. M. Chem. Commun. 2013, 49, 8199.  doi: 10.1039/c3cc44656e

    109. [109]

      Galindo, A. Inorg. Chem. 2016, 55, 2284.  doi: 10.1021/acs.inorgchem.5b02649

    110. [110]

      Poutas, L. C. V.; Reis, M. C.; Sanz, R.; Lopez, C. S.; Faza, O. N. Inorg. Chem. 2016, 55, 11372.  doi: 10.1021/acs.inorgchem.6b01916

    111. [111]

      Jiang, Y.; Jiang, J.; Fu, Y. Organometallics 2016, 35, 3388.  doi: 10.1021/acs.organomet.6b00602

    112. [112]

      Geary, L. M.; Chen, T. Y.; Montgomery, T. P.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 5920.  doi: 10.1021/ja502659t

    113. [113]

      Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6, 1901.  doi: 10.1021/acscatal.5b02667

    114. [114]

      Kwok, K. M.; Choong, C. K. S.; Ong, D. S. W.; Ng, J. C. Q.; Gwie, C. G.; Chen, L.; Borgna, A. ChemCatChem 2017, 9, 2443.  doi: 10.1002/cctc.v9.13

    115. [115]

      Stanowski, S.; Nicholas, K. M.; Srivastava, R. S. Organometallics 2012, 31, 515.  doi: 10.1021/om200447z

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(48)
  • Abstract views(2710)
  • HTML views(569)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return