Citation: Zhou Yuanchun, Zhou Zhi, Du Wei, Chen Yingchun. Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrone and 2, 5-Dienones via HOMO-Activation[J]. Acta Chimica Sinica, ;2018, 76(5): 382-386. doi: 10.6023/A18040131 shu

Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrone and 2, 5-Dienones via HOMO-Activation

  • Corresponding author: Du Wei, duweiyb@scu.edu.cn Chen Yingchun, ycchen@scu.edu.cn
  • Received Date: 5 April 2018
    Available Online: 9 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772126) and Sichuan University Distinguished Young Scientist Program (No. 2017SCU04A15)Sichuan University Distinguished Young Scientist Program 2017SCU04A15the National Natural Science Foundation of China 21772126

Figures(4)

  • The bicyclic lactones possess multiple reactive sites, and are usually employed as the key intermediates in the synthesis of natural products and bioactive substances. Among the methods for the construction of these chiral skeletons, the asymmetric Diels-Alder (DA) reaction with 2-pyrone substrates represents one of the most straightforward protocols, generally with high stereocontrol. However, in regard to the electron-deficient 2-pyrone substrates, the corresponding asymmetric DA reactions usually rely on LUMO-activation by chiral Lewis acids, suffering from relatively narrow substitutions and functional group limitations. As a result, the development of new activation modes for this type of DA reactions is in high demand. Here we report an asymmetric inverse-electron-demand Diels-Alder (IEDDA) reaction of 3-methoxycarbonyl-2-pyrone and cyclic 2, 5-dienones in the presence of a primary amine derived from cinchona alkaloid, through the in situ generation of extended trienamine species. In this case, the remote δ, e-C=C bond of 2, 5-dienone substrates is activated via a HOMO-raising strategy. A variety of bicyclic lactones with contiguous stereogenic centers were produced in moderate to good yields (46%~82%) with excellent diastereo-and enantioselectivity (>19:1 dr, 93%~99% ee). In addition, the cycloadduct underwent the ring-opening reaction with methanol, affording a cyclohexenol derivative with dense substitutions in an excellent yield with a retained ee value. Therefore, the current method supplies an efficient tool to construct chiral bicyclic lactones with high molecular complexity under mild aminocatalytic conditions, which might have potential application in organic synthesis and medicinal chemistry. A representative procedure for the asymmetric IEDDA reaction is as follows:3-Methoxycarbonyl-2-pyrone 1 (0.1 mmol), cyclic 2, 5-dienone 2 (0.2 mmol), amine catalyst C2 (0.02 mmol) and acid A4 (0.04 mmol) were added into an oven-dried vial equipped with a magnetic stirbar. p-Xylene (1.0 mL) was added and the mixture was stirred at 60℃ and monitored by TLC. After completion, the residue was purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate (8:1 to 4:1) to afford the product 3.
  • 加载中
    1. [1]

      (a) Luxenburger, A. Tetrahedron 2003, 59, 3297. (b) Huang, C. ; Li, W. ; Ma, F. ; Li, Q. ; Asada, Y. ; Koike, K. Chem. Pharm. Bull. 2012, 60, 1324.

    2. [2]

      (a) Posner, G. H. ; Ishihara, Y. Tetrahedron Lett. 1994, 35, 7545. (b) Nicolaou, K. C. ; Liu, J. J. ; Yang, Z. ; Ueno, H. ; Sorensen, E. J. ; Claiborne, C. F. ; Guy, R. K. ; Hwang, C. K. ; Nakada, M. ; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117, 634. (c) Stigers, K. D. ; Mar-Tang, R. ; Bartlett, P. A. J. Org. Chem. 1999, 64, 8409. (d) Burch, P. ; Binaghi, M. ; Scherer, M. ; Wentzel, C. ; Bossert, D. ; Eberhardt, L. ; Neuburger, M. ; Scheiffele, P. ; Gademann, K. Chem. Eur. J. 2013, 19, 2589. (e) Zhao, Y. M. ; Maimone, T. J. Angew. Chem., Int. Ed. 2015, 54, 1223. (f) Shimizu, H. ; Okamura, H. ; Iwagawa, T. ; Nakatani, M. Tetrahedron 2001, 57, 1903. (g) Lee, J. -H. ; Cho, C. -G. Org. Lett. 2016, 18, 5126.

    3. [3]

      (a) Afarinkia, K. ; Vinader, V. ; Nelson, T. D. ; Posner, G. H. Tetrahedron 1992, 48, 9111. (b) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650. (c) Heravi, M. M. ; Vavsari, V. F. RSC Adv. 2015, 5, 50890.

    4. [4]

      (a) Wang, Y. ; Li, H. ; Wang, Y. -Q. ; Liu, Y. ; Foxman, B. M. ; Deng, L. J. Am. Chem. Soc. 2007, 129, 6364. (b) Singh, R. P. ; Bartelson, K. ; Wang, Y. ; Su, H. ; Lu, X. ; Deng, L. J. Am. Chem. Soc. 2008, 130, 2422. (c) Bartelson, K. J. ; Singh, R. P. ; Foxman, B. M. ; Deng, L. Chem. Sci. 2011, 2, 1940.

    5. [5]

      Soh, J. Y.-T.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 6904.  doi: 10.1021/ja900582a

    6. [6]

      Shi, L.-M.; Dong, W.-W.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Org. Lett. 2017, 19, 4532.  doi: 10.1021/acs.orglett.7b02107

    7. [7]

      For a comprehensive review, see: Jiang, X. ; Wang, R. Chem. Rev. 2013, 113, 5515. 

    8. [8]

      (a) Markó, I. E. ; Evans, G. R. Tetrahedron Lett. 1994, 35, 2771. (b) Markó, I. E. ; Evans, G. R. ; Declercq, J. -P. Tetrahedron 1994, 50, 4557. (c) Posner, G. H. ; Carry, J. -C. ; Kyoo Lee, J. ; Bull, D. S. ; Dai, H. Tetrahedron Lett. 1994, 35, 1321. (d) Posner, G. H. ; Eydoux, F. ; Lee, J. K. ; Bull, D. S. Tetrahedron Lett. 1994, 35, 7541.

    9. [9]

      For a review, see: Li, J. -L. ; Liu, T. -Y. ; Chen, Y. -C. Acc. Chem. Res. 2012, 45, 1491.

    10. [10]

    11. [11]

    12. [12]

      For other examples, see: (a) Chen, P. -Q. ; Xiao, Y. -C. ; Yue, C. -Z. ; Chen, Y. -C. Org. Chem. Front. 2014, 1, 490. (b) Zhan, G. ; He, Q. ; Yuan, X. ; Chen, Y. -C. Org. Lett. 2014, 16, 6000. (c) Shi, M. -L. ; Zhan, G. ; Zhou, S. -L. ; Du, W. ; Chen, Y. -C. Org. Lett. 2016, 18, 6480. (d) He, X. -L. ; Zhao, H. -R. ; Duan, C. -Q. ; Du, W. ; Chen, Y. -C. Org. Lett. 2018, 20, 804. (e) Prieto, L. ; Talavera, G. ; Uria, U. ; Reyes, E. ; Vicario, J. L. ; Carrillo, L. Chem. Eur. J. 2014, 20, 2145.

    13. [13]

      For a review, see: Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748. 

    14. [14]

      For a review of additive effect, see: Hong, L. ; Sun, W. ; Yang, D. ; Li, G. ; Wang, R. Chem. Rev. 2016, 116, 4006.

    15. [15]

      For more details, see the Supporting Information.

    16. [16]

      CCDC-1834913(3g) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(20)
  • Abstract views(1716)
  • HTML views(436)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return