Citation: Wang Ling, Yang Guorui, Wang Jianan, Wang Silan, Peng Shengjie, Yan Wei. Research Progress on Electrospun Materials for Sodium-Ion Batteries[J]. Acta Chimica Sinica, ;2018, 76(9): 666-680. doi: 10.6023/A18040129 shu

Research Progress on Electrospun Materials for Sodium-Ion Batteries

  • Corresponding author: Yan Wei, yanwei@xjtu.edu.cn
  • Received Date: 3 April 2018
    Available Online: 6 September 2018

    Fund Project: Natural Science Basic Research Plan in Shaanxi Province of China 2017JM2022Natural Science Fund of Jiangsu Province BK20170416China Postdoctoral Science Foundation Funded Project 2014M560225the Fundamental Research Funds for the Central Universities xjj2016052Project supported by the Fundamental Research Funds for the Central Universities (No. xjj2016052), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM2022), Natural Science Fund of Jiangsu Province (No. BK20170416) and China Postdoctoral Science Foundation Funded Project (No. 2014M560225)

Figures(10)

  • The scarce lithium resources would ultimately fail to satisfy the ever-growing industrial demand, especially for the large-scale stationary energy storage. Sodium-ion batteries (SIBs) are considered as promising next-generation power sources because sodium is widely available and exhibits similar chemistry to that of lithium-ion batteries (LIBs). Although sodium share similar physical and chemical properties to lithium, the lager ionic radius, heavier molar mass and less negative redox potential of Na+/Na of the sodium jointly lead to some issues beset the SIBs, such as sluggish sodiation kinetics, larger volume expansion and lower energy density, which need to be tackled to promote the practical applications of the SIBs. Therefore, developing appropriate electrode materials is crucial to achieve SIBs with long lifespan and high energy density. One-dimensional nanostructures can provide orientated electronic (ionic) transport and strong tolerance to volume change, thus enhancing the electrochemical performance of electrode materials. Electrospinning technique is a low cost and versatile method to fabricate continuous one-dimensional functional materials with various morphology and targeted components that has been widely applied in SIBs. The volume change could be buffered efficiently by facilely modifying the morphology of electrospun materials or in-situ compositing with carbon materials. Benefiting from the ultra-high aspect ratio, electrospun one-dimensional electrodes can reduce the ionic transport distance, while provide continuous transport way for electron along the longitudinal direction, which is helpful to improve the sluggish sodiation kinetics. It is also worth noting that free-standing or flexible fibers could be easily obtained via the electrospinning technique, which can be used as binder-free electrode to enhance the energy density of the batteries. The research progress on electrospun materials for sodium-ion batteries is summarized in this review, including cathode materials and anode materials. Their electrochemical performance in sodium storage is discussed in detail. The advantages and challenges of these materials were pointed out, and the future development of electrospun materials for sodium ion batteries was also prospected.
  • 加载中
    1. [1]

      Pan, H.; Hu, Y.; Chen, L. Energ. Environ. Sci. 2013, 6, 2338.  doi: 10.1039/c3ee40847g

    2. [2]

      Hwang, J.; Myung, S.; Sun, Y. Chem. Soc. Rev. 2017, 46, 3529.  doi: 10.1039/C6CS00776G

    3. [3]

      Kim, H.; Kim, H.; Ding, Z.; Lee, M.; Lim, K.; Yoon, G.; Kang, K. Adv. Energy Mater. 2016, 6, 1600943.  doi: 10.1002/aenm.201600943

    4. [4]

      Samin, N.; Rusdi, R.; Kamarudin, N.; Kamarulzaman, N. Adv. Mater. Res. 2012, 545, 185.  doi: 10.4028/www.scientific.net/AMR.545

    5. [5]

      Tanabe, D.; Shimono, T.; Kobayashi, W.; Moritomo, Y. Phys. Status Solidi-R. 2014, 8, 287.  doi: 10.1002/pssr.v8.3

    6. [6]

      Park, K.; Yu, B.; Goodenough, J. Chem. Mater. 2015, 27, 6682.  doi: 10.1021/acs.chemmater.5b02684

    7. [7]

      Billaud, J.; Clement, R.; Armstrong, A.; Canales-Vazquez, J.; Rozier, P.; Grey, C.; Bruce, P. J. Am. Chem. Soc. 2014, 136, 17243.  doi: 10.1021/ja509704t

    8. [8]

      Kim, H.; Shakoor, R.; Park, C.; Lim, S.; Kim, J.; Jo, Y.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J. Adv. Funct. Mater. 2013, 23, 1147.  doi: 10.1002/adfm.v23.9

    9. [9]

      Zheng, Q.; Liu, W.; Li, X.; Zhang, H.; Feng, K.; Zhang, H. J. Mater. Chem. A 2016, 4, 19170.  doi: 10.1039/C6TA07109K

    10. [10]

      Zhang, Q.; Wang, W.; Wang, Y.; Feng, P.; Wang, K.; Cheng, S.; Jiang, K. Nano Energy 2016, 20, 11.  doi: 10.1016/j.nanoen.2015.12.005

    11. [11]

      Zhao, J.; Gao, Y.; Liu, Q.; Meng, X.; Chen, N.; Wang, C.; Du, F.; Chen, G. Chemistry 2017.

    12. [12]

      Kubota, K.; Komaba, S. J. Electrochem. Soc. 2015, 162, A2538.  doi: 10.1149/2.0151514jes

    13. [13]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica, 2014, 72, 21(in Chinese).
       

    14. [14]

      Zhang, Q.; Uchaker, E.; Candelaria, S.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127.  doi: 10.1039/c3cs00009e

    15. [15]

      Liu, D.; Cao, G. Energ. Environ. Sci. 2010, 3, 1218.  doi: 10.1039/b922656g

    16. [16]

      Lee, J.; Lee, J.; Chung, K.; Jung, H.; Kim, H.; Mun, J.; Choi, W. Electrochim. Acta 2016, 200, 21.  doi: 10.1016/j.electacta.2016.03.110

    17. [17]

      Cao, Y.; Xiao, L.; Sushko, M.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783.  doi: 10.1021/nl3016957

    18. [18]

      Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Si-monsen, J.; Ji, X. J. Mater. Chem. A 2013, 1, 10662.  doi: 10.1039/c3ta12389h

    19. [19]

      Ryu, W.; Jung, J.; Park, K.; Kim, S.; Kim, I. Nanoscale 2014, 6, 10975.  doi: 10.1039/C4NR02044H

    20. [20]

      Liao, S.; Sun, Y.; Wang, J.; Cui, H.; Wang, C. Electrochim. Acta 2016, 211, 11.  doi: 10.1016/j.electacta.2016.06.018

    21. [21]

      Fu, F.; Li, J.; Yao, Y.; Qin, X.; Dou, Y.; Wang, H.; Tsui, J.; Chan, K.; Shao, M. ACS Appl. Mater. Inter. 2017, 9, 16194.  doi: 10.1021/acsami.7b02175

    22. [22]

      Zhang, Q.; Guo, Y.; Guo, K.; Zhai, T.; Li, H. Chem. Commun. 2016, 52, 6229.  doi: 10.1039/C6CC01057A

    23. [23]

      Liu, Y.; Zhang, N.; Kang, H.; Shang, M.; Jiao, L.; Chen, J. Chemistry 2015, 21, 11878.  doi: 10.1002/chem.v21.33

    24. [24]

      Wang, J.; Yang, G.; Wang, L.; Yan, W. J. Mater. Chem. A 2016, 4, 8620.  doi: 10.1039/C6TA02655A

    25. [25]

      Mai, L.; Xu, L.; Han, C.; Xu, X.; Luo, Y.; Zhao, S.; Zhao, Y. Nano Lett. 2010, 10, 4750.  doi: 10.1021/nl103343w

    26. [26]

      Ren, Y.; Yang, B.; Wei, H.; Ding, J. Solid State Ionics 2016, 292, 27.  doi: 10.1016/j.ssi.2016.05.002

    27. [27]

      Greiner, A.; Wendorff, J. Angew. Chem. Int. Ed. 2007, 46, 5670.

    28. [28]

      Jung, J.; Lee, C.; Yu, S.; Kim, I. J. Mater. Chem. A 2016, 4, 703.  doi: 10.1039/C5TA06844D

    29. [29]

      Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Nanoscale 2014, 6, 693.  doi: 10.1039/C3NR05022J

    30. [30]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154(in Chinese).
       

    31. [31]

      Li, M.; Liu, L.; Wang, P.; Li, J.; Leng, Q.; Cao, G. Electrochim. Acta, 2017, 252, 523.  doi: 10.1016/j.electacta.2017.09.020

    32. [32]

      Liu, J.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Nanoscale, 2014, 6, 5081.  doi: 10.1039/c3nr05329f

    33. [33]

      Li, H.; Bai, Y.; Wu, F.; Li, Y.; Wu, C. J. Power Sources, 2015, 273, 784.  doi: 10.1016/j.jpowsour.2014.09.153

    34. [34]

      Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. Solid State Ionics 2015, 278, 281.  doi: 10.1016/j.ssi.2015.06.026

    35. [35]

      Zhu, Q.; Nan, B.; Shi, Y.; Zhu, Y.; Wu, S.; He, L.; Deng, Y.; Wang, L.; Chen, Q.; Lu, Z. J. Solid State Electrochem. 2017, 21, 2985.  doi: 10.1007/s10008-017-3627-y

    36. [36]

      Kajiyama, S.; Kikkawa, J.; Hoshino, J.; Okubo, M.; Hosono, E. Chemistry, 2014, 20, 12636.  doi: 10.1002/chem.v20.39

    37. [37]

      Barker, J.; Saidi, M.; Swoyer, J. Electrochem. Solid-State Lett. 2003, 6, A1.  doi: 10.1149/1.1523691

    38. [38]

      Jin, T.; Liu, Y.; Li, Y.; Cao, K.; Wang, X.; Jiao, L. Adv. Energy Mater. 2017, 7, 1700087.  doi: 10.1002/aenm.201700087

    39. [39]

      Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica, 2017, 75, 218(in Chinese).
       

    40. [40]

      Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.  doi: 10.1016/j.jpowsour.2016.01.101

    41. [41]

      Kalluri, S.; Seng, K.; Pang, W.; Guo, Z.; Chen, Z.; Liu, H.; Dou, S. ACS Appl. Mater. Inter. 2014, 6, 8953.  doi: 10.1021/am502343s

    42. [42]

      Kalluri, S.; Pang, W.; Seng, K.; Chen, Z.; Guo, Z.; Liu, H.; Dou, S. J. Mater. Chem. A 2015, 3, 250.  doi: 10.1039/C4TA04271A

    43. [43]

      Niu, C.; Meng, J.; Wang, X.; Han, C.; Yan, M.; Zhao, K.; Xu, X.; Ren, W.; Zhao, Y.; Xu, L.; Zhang, Q.; Zhao, D.; Mai, L. Nat. Commun. 2015, 6, 7402.  doi: 10.1038/ncomms8402

    44. [44]

      Niu, Y.; Xu, M.; Dai, C.; Shen, B.; Li, C. Phys. Chem. Chem. Phys. 2017, 19, 17270.  doi: 10.1039/C7CP02483E

    45. [45]

      Yu, T.; Lin, B.; Li, Q.; Wang, X.; Qu, W.; Zhang, S.; Deng, C. Phys. Chem. Chem. Phys. 2016, 18, 26933.  doi: 10.1039/C6CP04958C

    46. [46]

      Gocheva, I.; Nishijima, M.; Doi, T.; Okada, S.; Yamaki, J.; Nishida, T. J. Power Sources 2009, 187, 247.  doi: 10.1016/j.jpowsour.2008.10.110

    47. [47]

      Lu, Y.; Wang, L.; Cheng, J.; Goodenough, J. Chem. Commun. 2012, 48, 6544.  doi: 10.1039/c2cc31777j

    48. [48]

      Zhao, R.; Zhu, L.; Cao, Y.; Ai, X.; Yang, H. Electrochem. Commun. 2012, 21, 36.  doi: 10.1016/j.elecom.2012.05.015

    49. [49]

      Zhou, M.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. J. Polym. Sci. Pol. Phys. 2013, 51, 114.  doi: 10.1002/polb.23184

    50. [50]

      Zhang, S.; Zhang, J.; Wu, S.; Lv, W.; Kang, F.; Yang, Q. Acta Chim. Sinica 2017, 75, 163(in Chinese).  doi: 10.11862/CJIC.2017.023
       

    51. [51]

      Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172.
       

    52. [52]

      Doeff, M.; Ma, Y.; Visco, S.; Jonghe, L. C. D. J. Electrochem. Soc. 1993, 140, L169.  doi: 10.1149/1.2221153

    53. [53]

      Zhang, B.; Kang, F.; Tarascon, J.; Kim, J. Prog. Mater Sci. 2016, 76, 319.  doi: 10.1016/j.pmatsci.2015.08.002

    54. [54]

      Chen, T.; Liu, Y.; Pan, L.; Lu, T.; Yao, Y.; Sun, Z.; Chua, D.; Chen, Q. J. Mater. Chem. A 2014, 2, 4117.  doi: 10.1039/c3ta14806h

    55. [55]

      Jin, J.; Shi, Z.; Wang, C. Electrochim. Acta 2014, 141, 302.  doi: 10.1016/j.electacta.2014.07.079

    56. [56]

      Jin, J.; Yu, B.; Shi, Z.; Wang, C.; Chong, C. J. Power Sources 2014, 272, 800.  doi: 10.1016/j.jpowsour.2014.08.119

    57. [57]

      Zhao, P.; Zhang, J.; Li, Q.; Wang, C. J. Power Sources 2016, 334, 170.  doi: 10.1016/j.jpowsour.2016.10.029

    58. [58]

      Zhao, P.; Yu, B.; Sun, S.; Guo, Y.; Chang, Z.; Li, Q.; Wang, C. Electrochim. Acta 2017, 232, 348.  doi: 10.1016/j.electacta.2017.02.159

    59. [59]

      Liu, Y.; Zhang, N.; Yu, C.; Jiao, L.; Chen, J. Nano Lett. 2016, 16, 3321.  doi: 10.1021/acs.nanolett.6b00942

    60. [60]

      Zhu, J.; Chen, C.; Lu, Y.; Ge, Y.; Jiang, H.; Fu, K.; Zhang, X. Carbon 2015, 94, 189.  doi: 10.1016/j.carbon.2015.06.076

    61. [61]

      Qi, Y.; Fan, W.; Nan, G. Mater. Lett. 2017, 189, 206.  doi: 10.1016/j.matlet.2016.11.085

    62. [62]

      Chen, Z.; Wang, T.; Zhang, M.; Cao, G. Small 2017, 13, 1604045.  doi: 10.1002/smll.201604045

    63. [63]

      Wang, S.; Xia, L.; Yu, L.; Zhang, L.; Wang, H.; Lou, X. Adv. Energy Mater. 2016, 6, 1502217.  doi: 10.1002/aenm.201502217

    64. [64]

      Guo, X.; Zhang, X.; Song, H.; Zhou, J. J. Mater. Chem. A 2017, 5, 21343.  doi: 10.1039/C7TA05621D

    65. [65]

      Xu, J.; Wang, M.; Wickramaratne, N.; Jaroniec, M.; Dou, S.; Dai, L. Adv. Mater. 2015, 27, 2042.  doi: 10.1002/adma.v27.12

    66. [66]

      Liu, Y.; Fan, L.; Jiao, L. J. Mater. Chem. A 2017, 5, 1698.  doi: 10.1039/C6TA09961K

    67. [67]

      Xiong, H.; Slater, M.; Balasubramanian, M.; Johnson, C.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560.  doi: 10.1021/jz2012066

    68. [68]

      Bi, Z.; Paranthaman, M.; Menchhofer, P.; Dehoff, R.; Bridges, C.; Chi, M.; Guo, B.; Sun, X.; Dai, S. J. Power Sources 2013, 222, 461.  doi: 10.1016/j.jpowsour.2012.09.019

    69. [69]

      Yang, X.; Wang, C.; Yang, Y.; Zhang, Y.; Jia, X.; Chen, J.; Ji, X. J. Mater. Chem. A 2015, 3, 8800.  doi: 10.1039/C5TA00614G

    70. [70]

      Wu, L.; Buchholz, D.; Bresser, D.; Chagas, L.; Passerini, S. J. Power Sources 2014, 251, 379.  doi: 10.1016/j.jpowsour.2013.11.083

    71. [71]

      Shi, X.; Zhang, Z.; Du, K.; Lai, Y.; Fang, J.; Li, J. J. Power Sources 2016, 330, 1.  doi: 10.1016/j.jpowsour.2016.08.132

    72. [72]

      Zhang, Y.; Pu, X.; Yang, Y.; Zhu, Y.; Hou, H.; Jing, M.; Yang, X.; Chen, J.; Ji, X. Phys. Chem. Chem. Phys. 2015, 17, 15764.  doi: 10.1039/C5CP01227A

    73. [73]

      Huang, J.; Yuan, D.; Zhang, H.; Cao, Y.; Li, G.; Yang, H.; Gao, X. RSC Adv. 2013, 3, 12593.  doi: 10.1039/c3ra42413h

    74. [74]

      Pérez-Flores, J.; Baehtz, C.; Kuhn, A.; García-Alvarado, F. J. Mater. Chem. A 2014, 2, 1825.  doi: 10.1039/C3TA13394J

    75. [75]

      Su, D.; Dou, S.; Wang, G. Chem. Mater. 2015, 27, 6022.  doi: 10.1021/acs.chemmater.5b02348

    76. [76]

      Wu, Y.; Jiang, Y.; Shi, J.; Gu, L.; Yu, Y. Small 2017, 13, 1700129.  doi: 10.1002/smll.v13.22

    77. [77]

      Hwang, J.; Myung, S.; Lee, J.; Abouimrane, A.; Belharouak, I.; Sun, Y. Nano Energy 2015, 16, 218.  doi: 10.1016/j.nanoen.2015.06.017

    78. [78]

      Wu, Y.; Liu, X.; Yang, Z.; Gu, L.; Yu, Y. Small 2016, 12, 3522.  doi: 10.1002/smll.201600606

    79. [79]

      Shen, J.; Hu, W.; Li, Y.; Li, L.; Lv, X.; Zhang, L. J. Alloys Compd. 2017, 701, 372.  doi: 10.1016/j.jallcom.2017.01.100

    80. [80]

      Udomsanti, P.; Vongsetskul, T.; Limthongkul, P.; Tangboriboonrat, P.; Subannajui, K.; Tammawat, P. Electrochim. Acta 2017, 238, 349.  doi: 10.1016/j.electacta.2017.03.156

    81. [81]

      Xiong, Y.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. ACS Appl. Mater. Inter. 2016, 8, 16684.  doi: 10.1021/acsami.6b03757

    82. [82]

      Ge, Y.; Zhu, J.; Lu, Y.; Chen, C.; Qiu, Y.; Zhang, X. Electrochim. Acta 2015, 176, 989.  doi: 10.1016/j.electacta.2015.07.105

    83. [83]

      Yeo, Y.; Jung, J.; Park, K.; Kim, I. Sci. Rep. 2015, 5, 13862.  doi: 10.1038/srep13862

    84. [84]

      Lee, N.; Jung, J.; Lee, J.; Jang, H.; Kim, I.; Ryu, W. Electrochim. Acta 2018, 263, 417.  doi: 10.1016/j.electacta.2018.01.085

    85. [85]

      Zou, W.; Fan, C.; Li, J. Chin. J. Chem. 2017, 35, 79.  doi: 10.1002/cjoc.v35.1

    86. [86]

      Liu, J.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Phys. Chem. Chem. Phys. 2013, 15, 20813.  doi: 10.1039/c3cp53882f

    87. [87]

      Wu, C.; Kopold, P.; Ding, Y.; Aken, P.; Maier, J.; Yu, Y. ACS Nano 2015, 9, 6610.  doi: 10.1021/acsnano.5b02787

    88. [88]

      Wang, D.; Liu, Q.; Chen, C.; Li, M.; Meng, X.; Bie, X.; Wei, Y.; Huang, Y.; Du, F.; Wang, C.; Chen, G. ACS Appl. Mater. Inter. 2016, 8, 2238.  doi: 10.1021/acsami.5b11003

    89. [89]

      Hu, Q.; Yu, M.; Liao, J.; Wen, Z.; Chen, C. J. Mater. Chem. A 2018, 6, 2365.  doi: 10.1039/C7TA10207K

    90. [90]

      Guo, D.; Qin, J.; Zhang, C.; Cao, M. Cryst. Growth Des. 2018, 18, 3291.  doi: 10.1021/acs.cgd.7b01549

    91. [91]

      Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Huang, Y.; Yang, H. Adv. Energy Mater. 2016, 6, 1502197.  doi: 10.1002/aenm.201502197

    92. [92]

      Liu, H.; Liu, Y. Ceram. Int. 2018, 44, 5813.  doi: 10.1016/j.ceramint.2017.12.147

    93. [93]

      Li, W.; Zeng, L.; Wu, Y.; Yu, Y. Sci. China Mater. 2016, 59, 287.  doi: 10.1007/s40843-016-5039-6

    94. [94]

      Mao, Z.; Zhou, M.; Wang, K.; Wang, W.; Tao, H.; Jiang, K. RSC Adv. 2017, 7, 23122.  doi: 10.1039/C7RA02965A

    95. [95]

      Fu, B.; Zhou, X.; Wang, Y. Mater. Lett. 2016, 170, 21.  doi: 10.1016/j.matlet.2016.01.132

    96. [96]

      Wang, X.; Liu, Y.; Wang, Y.; Jiao, L. Small 2016, 12, 4865.  doi: 10.1002/smll.v12.35

    97. [97]

      Xia, G.; Gao, Q.; Sun, D.; Yu, X. Small 2017, 13.
       

    98. [98]

      Xu, Z.; Yao, S.; Cui, J.; Zhou, L.; Kim, J. Energy Storage Mater. 2017, 8, 10.  doi: 10.1016/j.ensm.2017.03.010

    99. [99]

      Yang, L.; Zhu, Y.; Sheng, J.; Li, F.; Tang, B.; Zhang, Y.; Zhou, Z. Small 2017, 1702588.

    100. [100]

      Lee, J.; Shin, H.; Lee, C.; Jung, K. Nanoscale Res. Lett. 2016, 11, 45.  doi: 10.1186/s11671-016-1271-6

    101. [101]

      Guo, Y.; Zhu, Y.; Yuan, C.; Wang, C. Mater. Lett. 2017, 199, 101.  doi: 10.1016/j.matlet.2017.04.069

    102. [102]

      Wu, L.; Lang, J.; Zhang, P.; Zhang, X.; Guo, R.; Yan, X. J. Mater. Chem. A 2016, 4, 18392.  doi: 10.1039/C6TA08364A

    103. [103]

      Xiao, Y.; Lee, S.; Sun, Y. Adv. Energy Mater. 2017, 7, 1601329.  doi: 10.1002/aenm.201601329

    104. [104]

      Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. J. Power Sources 2014, 247, 391.  doi: 10.1016/j.jpowsour.2013.08.123

    105. [105]

      Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater. 2014, 26, 3854.  doi: 10.1002/adma.201306314

    106. [106]

      Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76, 286(in Chinese).  doi: 10.3866/PKU.WHXB201708172
       

    107. [107]

      Ryu, W.; Jung, J.; Park, K.; Kim, S.; Kim, I. Nanoscale 2014, 6, 10975.  doi: 10.1039/C4NR02044H

    108. [108]

      Chen, C.; Li, G.; Lu, Y.; Zhu, J.; Jiang, M.; Hu, Y.; Cao, L.; Zhang, X. Electrochim. Acta 2016, 222, 1751.  doi: 10.1016/j.electacta.2016.11.170

    109. [109]

      Zhu, C.; Mu, X.; Aken, P.; Yu, Y.; Maier, J. Angew. Chem. Int. Ed. 2014, 53, 2152.  doi: 10.1002/anie.201308354

    110. [110]

      Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y. Sci. Rep. 2015, 5, 9254.  doi: 10.1038/srep09254

    111. [111]

      Cho, J.; Lee, J.; Kang, Y. Sci. Rep. 2016, 6, 23699.  doi: 10.1038/srep23699

    112. [112]

      Ko, Y.; Choi, S.; Park, S.; Kang, Y. Nanoscale 2014, 6, 10511.  doi: 10.1039/C4NR02538E

    113. [113]

      Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. Adv. Mater. 2015, 27, 3305.  doi: 10.1002/adma.v27.21

    114. [114]

      Cho, J.; Lee, S.; Kang, Y. Sci. Rep. 2016, 6, 23338.  doi: 10.1038/srep23338

    115. [115]

      Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323.  doi: 10.1039/C3EE42944J

    116. [116]

      Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070.  doi: 10.1039/c2cc32730a

    117. [117]

      Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 65.  doi: 10.1016/j.elecom.2012.05.017

    118. [118]

      Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.  doi: 10.1149/1.3607983

    119. [119]

      Dirican, M.; Lu, Y.; Ge, Y.; Yildiz, O.; Zhang, X. ACS Appl. Mater. Inter. 2015, 7, 18387.  doi: 10.1021/acsami.5b04338

    120. [120]

      Liang, J.; Yuan, C.; Li, H.; Fan, K.; Wei, Z.; Sun, H.; Ma, J. Nano-Micro Lett. 2017, 10.

    121. [121]

      Liu, Y.; Zhang, N.; Jiao, L.; Chen, J. Adv. Mater. 2015, 27, 6702.  doi: 10.1002/adma.201503015

    122. [122]

      Mao, M.; Yan, F.; Cui, C.; Ma, J.; Zhang, M.; Wang, T.; Wang, C. Nano Lett. 2017, 17, 3830.  doi: 10.1021/acs.nanolett.7b01152

    123. [123]

      Darwiche, A.; Marino, C.; Sougrati, M.; Fraisse, B.; Stievano, L.; Monconduit, L. J. Am. Chem. Soc. 2012, 134, 20805.  doi: 10.1021/ja310347x

    124. [124]

      Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. ACS Nano 2013, 7, 6378.  doi: 10.1021/nn4025674

    125. [125]

      Zhu, M.; Kong, X.; Yang, H.; Zhu, T.; Liang, S.; Pan, A. Appl. Surf. Sci. 2018, 428, 448.  doi: 10.1016/j.apsusc.2017.09.154

    126. [126]

      Ji, L.; Gu, M.; Shao, Y.; Li, X.; Engelhard, M.; Arey, B.; Wang, W.; Nie, Z.; Xiao, J.; Wang, C.; Zhang, J.; Liu, J. Adv. Mater. 2014, 26, 2901.  doi: 10.1002/adma.v26.18

    127. [127]

      Chen, C.; Fu, K.; Lu, Y.; Zhu, J.; Xue, L.; Hu, Y.; Zhang, X. RSC Adv. 2015, 5, 30793.  doi: 10.1039/C5RA01729G

    128. [128]

      Jia, H.; Dirican, M.; Chen, C.; Zhu, J.; Zhu, P.; Yan, C.; Li, Y.; Dong, X.; Guo, J.; Zhang, X. ACS Appl. Mater. Inter. 2018.

    129. [129]

      Jin, Y.; Yuan, H.; Lan, J.; Yu, Y.; Lin, Y.; Yang, X. Nanoscale 2017, 9, 13298.  doi: 10.1039/C7NR04912A

    130. [130]

      Yin, H.; Cao, M.; Yu, X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Mater. Chem. Front. 2017, 1, 1615.  doi: 10.1039/C7QM00128B

    131. [131]

      Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S.; Wang, C. ACS Nano 2015, 9, 3254.  doi: 10.1021/acsnano.5b00376

    132. [132]

      Ma, X.; Chen, L.; Ren, X.; Hou, G.; Chen, L.; Zhang, L.; Liu, B.; Ai, Q.; Zhang, L.; Si, P.; Lou, J.; Feng, J.; Ci, L. J. Mater. Chem. A 2018, 6, 1574.  doi: 10.1039/C7TA07762A

    133. [133]

      Liu, Y.; Zhang, N.; Liu, X.; Chen, C.; Fan, L.; Jiao, L. Energy Storage Mater. 2017, 9, 170.  doi: 10.1016/j.ensm.2017.07.012

    134. [134]

      Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.; Wang, C. Adv. Energy Mater. 2015, 5, 1500174.  doi: 10.1002/aenm.201500174

    135. [135]

      Jung, S.; Choi, J.; Han, Y. J. Mater. Chem. A 2018, 6, 1772.  doi: 10.1039/C7TA07310K

    136. [136]

      Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Nano Lett. 2014, 14, 1865.  doi: 10.1021/nl404637q

    137. [137]

      Li, W.; Chou, S.; Wang, J.; Liu, H.; Dou, S. Chem. Commun. 2015, 51, 3682.  doi: 10.1039/C4CC09604E

    138. [138]

      Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. ACS Nano 2017, 11, 11602.  doi: 10.1021/acsnano.7b06625

    139. [139]

      Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. J. Mater. Chem. A 2014, 2, 2050.  doi: 10.1039/C3TA13976J

    140. [140]

      Ge, X.; Li, Z.; Yin, L. Nano Energy 2017, 32, 117.  doi: 10.1016/j.nanoen.2016.11.055

    141. [141]

      Kim, S.; Manthiram, A. Chem. Commun. 2016, 52, 4337.  doi: 10.1039/C5CC10585D

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(62)
  • Abstract views(6217)
  • HTML views(1240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return