Citation: Du Han, Liang Hongtao, Yang Yang. Molecular Dynamics Simulation of Monolayer Confined Ice-Water Phase Equilibrium[J]. Acta Chimica Sinica, ;2018, 76(6): 483-490. doi: 10.6023/A18040128 shu

Molecular Dynamics Simulation of Monolayer Confined Ice-Water Phase Equilibrium

  • Corresponding author: Yang Yang, yyang@phy.ecnu.edu.cn
  • Received Date: 3 April 2018
    Available Online: 17 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 11504110)the National Natural Science Foundation of China 11504110

Figures(8)

  • Confined water became a recent hot topic in water science due to its extremely abundant structural phase behavior. However, there exist few studies focused on the coexistence of two or more confined water phases and their related properties. We present a methodology for studying the coexistences of two confined phases of water, based on a series equilibrium molecular-dynamics (MD) simulations using isobaric-isoenthalpic ensembles to iteratively predict the melting temperatures of the low dimensional confined crystal phase of water. The methodology is applied to the coexistence of the monolayer ice and water (described with a simple water model, i.e. SPC/E model) confined in the 0.65 nm size pore, yielding a direct determination of the melting point and extensive atomic-scale characterization for the mono-molecular layer containing the confined ice-water coexistence line. A finite value of lateral pressure (5000 bar) is adopted in the simulation, to mimic the high-pressure environment of the water molecules confined in the bi-graphene pocket in a recent experiment by Algara-Siller et al.[Nature, 519, 443 (2015)]. The rough structural type and the capillary fluctuation of the line, the microscopic mechanism of the solid-liquid structural transition along the line, as well as the transport of the point defect in the solid side of the coexistence line are identified directly from the MD trajectories. Various profiles of different thermodynamic properties across the coexistence line illustrate the unique features for the in-plane coexistence of the monolayer confined ice-water system, e.g., the unexpected large width of the crystal-melt transition region, and the compression state along the solid-liquid phase coexistence line. The methodology presented in the current study can be easily applied to the coexistence of multilayer confined ice and water phases, as well as the many other types of water models beyond the SPC/E used in current work. The achievement of the low dimensional confined ice-water phase coexistence could potentially facilitate the fundamental advancements in thermodynamics and kinetic theories of the low dimensional water science.
  • 加载中
    1. [1]

      Koga, K.; Zeng, X. C.; Tanaka, H. Phys. Rev. Lett. 1997, 79, 5262.  doi: 10.1103/PhysRevLett.79.5262

    2. [2]

      Bai, J.; Zeng, X. C. Proc. Nat. Acad. Sci. 2012, 109, 21240.  doi: 10.1073/pnas.1213342110

    3. [3]

      Ferguson, A. L.; Giovambattista, N.; Rossky, P. J.; Panagiotopoulos, A. Z.; Debenedetti, P. G. J. Phys. Chem. 2012, 137, 144501.  doi: 10.1063/1.4755750

    4. [4]

      Kumar, P.; Buldyrev, S. V.; Starr, F. W.; Giovambat-tista, N.; Stanley, H. E. Phys. Rev. E 2005, 72, 051503.  doi: 10.1103/PhysRevE.72.051503

    5. [5]

      Qiu, H.; Guo, W. Phys. Rev. Lett. 2013, 110, 195701.  doi: 10.1103/PhysRevLett.110.195701

    6. [6]

      Bai, J. C.; Angell, A.; Zeng, X. C. Proc. Nat. Acad. Sci. 2010, 107, 5718.  doi: 10.1073/pnas.0906437107

    7. [7]

      Johnston, J. C.; Kastelowitz, N.; Molinero, V. J. Phys. Chem. 2010, 133, 283101.

    8. [8]

      Algara-Siller, G.; Lehtinen, O.; Wang, F.; Nair, R.; Kaiser, U.; Wu, H.; Geim, A.; Grigorieva, I. Nature 2015, 519, 443.  doi: 10.1038/nature14295

    9. [9]

      Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys.-Chim. Sin. 2012, 28, 573.  doi: 10.3866/PKU.WHXB201112191

    10. [10]

      Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752.  doi: 10.1126/science.1245711

    11. [11]

      Zhao, M. Y.; Yang, X. P.; Yang, X. N. Acta Phys.-Chim. Sin. 2015, 31, 1489.  doi: 10.3866/PKU.WHXB201506011

    12. [12]

      Sun, Y. R.; Yu, F.; Ma, J. Acta Phys.-Chim. Sin. 2017, 33, 2173.  doi: 10.3866/PKU.WHXB201705312

    13. [13]

      Bai, J.; Angell, C. A.; Zeng, X. C. Proc. Nat. Acad. Sci. 2010, 107, 5718.  doi: 10.1073/pnas.0906437107

    14. [14]

      Johnston, J. C.; Kastelowitz, N.; Molinero, V. J. Phys. Chem. 2010, 133, 283101.

    15. [15]

      Chen, J.; Schusteritsch, G.; Pickard, C. J.; Salzmann, C. G.; Michaelides, A. Phys. Rev. Lett. 2016, 116, 025501.  doi: 10.1103/PhysRevLett.116.025501

    16. [16]

      Koga, K.; Tanaka, H. J. Phys. Chem. 2005, 122, 104711.

    17. [17]

      Zangi, R.; Mark, A. E. Phys. Rev. Lett. 2003, 91, 025502.  doi: 10.1103/PhysRevLett.91.025502

    18. [18]

      Zhao, W. H.; Wang, L.; Bai, J.; Yuan, L. F.; Yang, J.; Zeng, X. C. Acc. Chem. Res. 2014, 47, 2505.  doi: 10.1021/ar5001549

    19. [19]

      Frolov, T.; Mishin, Y. J. Phys. Chem. 2015, 143, 044706.

    20. [20]

      Berendsen, H. J. C.; Grigerat, J. R.; Straatsma, T. P. Chem. Soc. 1987, 91, 24.

    21. [21]

      Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys. Rev. Lett. 2009, 102, 050603.  doi: 10.1103/PhysRevLett.102.050603

    22. [22]

      Xia, X. Berkowitz, M. L. Phys. Rev. Lett. 1995, 74, 3193.  doi: 10.1103/PhysRevLett.74.3193

    23. [23]

      Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. J. Am. Chem. Soc. 2009, 131, 12838.  doi: 10.1021/ja904708f

    24. [24]

      Yang, J.; Meng, S.; Xu, L.; Wang, E. Phys. Rev. Lett. 2004, 92, 146102.  doi: 10.1103/PhysRevLett.92.146102

    25. [25]

      Magda, J. J.; Tirell, M.; Davis, H. T. J. Chem. Phys. 1986, 84, 2901.

    26. [26]

      Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B 2003, 107, 1345.  doi: 10.1021/jp0268112

    27. [27]

      Hockney, R. W. ; Eastwood, J. W. Computer Simulation Using Particles, CRC Press, U. S., 1988, 55.

    28. [28]

      Yeh, I. C.; Berkowitz, M. L. J. Chem. Phys. 1999, 111, 3155.  doi: 10.1063/1.479595

    29. [29]

      Plimpton, S. J. Comput. Phys. 1995, 117, 1.  doi: 10.1006/jcph.1995.1039

    30. [30]

      Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1997, 23, 327.

    31. [31]

      Frenkel, D. ; Smit, B. Understanding Molecular Simulation, 2nd ed., Academic Press, New York, 2002.

    32. [32]

      Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5749.  doi: 10.1063/1.449883

    33. [33]

      Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5759.  doi: 10.1063/1.449884

    34. [34]

      Davidchack, R. L.; Laird, B. B. Phys. Rev. Lett. 2000, 85, 4751.  doi: 10.1103/PhysRevLett.85.4751

    35. [35]

      Hoyt, J. J.; Asta, M.; Haxhimali, T.; Karma, A.; Napolitano, R. E.; Trivedi, R.; Laird, B. B.; Morris, J. R. MRS Bull. 2004, 29, 935.  doi: 10.1557/mrs2004.263

    36. [36]

      Frolov, T.; Mishin, Y. Model. Simul. Mater. Sci. Eng. 2010, 18, 074003.  doi: 10.1088/0965-0393/18/7/074003

    37. [37]

      Becker, C. A.; Hoyt, J. J.; Buta, D.; Asta, M. Phys. Rev. E 2007, 75, 061610.  doi: 10.1103/PhysRevE.75.061610

    38. [38]

      Beckera, C. A.; Asta, M.; Hoyt, J. J.; Foiles, S. M. J. Chem. Phys. 2006, 124, 164708.  doi: 10.1063/1.2185628

    39. [39]

      Benet, J.; MacDowell, L. G.; Sanz, E. J. Chem. Phys. 2014, 141, 034701.

    40. [40]

      Benet, J.; MacDowell, L. G.; Sanz, E. Phys. Chem. Chem. Phys. 2014, 16, 22159.  doi: 10.1039/C4CP03398A

    41. [41]

      Andersen, H. C. J. Chem. Phys. 1980, 72, 2384.  doi: 10.1063/1.439486

    42. [42]

      Puri, P.; Yang, V. J. Phys. Chem. C 2007, 111, 11776.  doi: 10.1021/jp0724774

    43. [43]

      Liang, H. T.; Laird, B. B.; Asta, M.; Yang, Y. Acta Mater. 2018, 143, 329.  doi: 10.1016/j.actamat.2017.09.059

    44. [44]

      Davidchack, R. L.; Laird, B. B. J. Chem. Phys. 1998, 108, 9452.  doi: 10.1063/1.476396

    45. [45]

      Buta, D.; Asta, M.; Hoyt, J. J. Phys. Rev. E 2008, 78, 031605.  doi: 10.1103/PhysRevE.78.031605

    46. [46]

      Morris, J. R. Phys. Rev. B 2002, 66, 144104.  doi: 10.1103/PhysRevB.66.144104

    47. [47]

      Yang, Y.; Olmsted, D.; Asta, M.; Laird, B. B. Acta Mater. 2012, 60, 4960.  doi: 10.1016/j.actamat.2012.05.016

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

Metrics
  • PDF Downloads(38)
  • Abstract views(3409)
  • HTML views(715)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return