Citation: Chang Shilei, Liang Feng, Yao Yaochun, Ma Wenhui, Yang Bin, Dai Yongnian. Research Progress of Metallic Carbon Dioxide Batteries[J]. Acta Chimica Sinica, ;2018, 76(7): 515-525. doi: 10.6023/A18030125 shu

Research Progress of Metallic Carbon Dioxide Batteries

  • Corresponding author: Liang Feng, liangfeng@kmust.edu.cn
  • Received Date: 30 March 2018
    Available Online: 30 July 2018

    Fund Project: the the National Natural Science Foundation of China 51704136Project supported by the the National Natural Science Foundation of China (Nos. 51704136, 11765010), the Yunnan applied basic research project of China (No. 2016FB087) and the Yunnan Academy of Liberal Exploration Funds of China (No. 2017HA006)the Yunnan applied basic research project of China 2016FB087the Yunnan Academy of Liberal Exploration Funds of China 2017HA006the the National Natural Science Foundation of China 11765010

Figures(7)

  • Due to the heavy use of fossil fuels, the emission of carbon dioxide has been steadily increased and the climate has been deteriorated severely. In order to solve these problems, various physical and chemical methods were used to reduce the amount of carbon dioxide in the atmosphere, but the result is not so effective. Metal carbon dioxide batteries not only can capture carbon dioxide, but also can be used as clean energy storage devices. At the same time, the development and research of metal carbon dioxide batteries also promote the development of the electric vehicle industry towards a more economical, environmentally friendly and sustainable direction. Based on these advantages, metal carbon dioxide battery has developed rapidly in recent years. Li-CO2 batteries exhibit an extremely high discharge capacity of 17625 mAh/g and a cut-off capacity of 1000 mAh/g at a current density of 100 mA/g, running for 100 cycles at low overpotentials. Quasi-solid state Na-CO2 batteries are non-flammable and have strong electrolyte-locking ability. It can run 400 cycles at 500 mA/g with a fixed capacity of 1000 mAh/g in pure CO2. Its electrochemical performance has the potential to be further improved. Al-CO2 battery has good application prospects and economic benefits due to the low cost of Al as well as great economic value of the sodium aluminate as discharge product. Mg-CO2 battery shows a discharge voltage plateau of 0.9 V when the volume ratio of CO2/O2 is 1:1, which is higher than that of pure O2. This paper mainly introduces the research progress of metal (lithium, sodium, aluminum, and magnesium) carbon dioxide battery, and compares the electrochemical performance of metal (lithium, sodium) carbon dioxide battery with metal (lithium, sodium) oxygen battery, puts forward the current problems of metal carbon dioxide batteries, and provides the solutions. Finally, the future development of metal carbon dioxide batteries is reviewed.
  • 加载中
    1. [1]

      Friedlingstein, P.; Houghton, R. A.; Marland, G.; Hackler, J.; Boden, T. A.; Conway, T. J.; Canadell, J. G.; Raupach, M. R.; Ciais, P.; Quere, C. L. Nature Geosci. 2010, 3, 811.  doi: 10.1038/ngeo1022

    2. [2]

      Schrag, D. P. Science 2007, 315, 812.  doi: 10.1126/science.1137632

    3. [3]

      Kim, J.; Hyun, J. Y.; Chong, W. K.; Ariaratnam, S. J. Eng. Des. Technol. 2015, 15, 270.

    4. [4]

      Chen, B.; Nishio, M.; Song, Y. C.; Akai, M. Energy Procedia 2009, 1, 4969.  doi: 10.1016/j.egypro.2009.02.329

    5. [5]

      Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Nature 2016, 529, 68.  doi: 10.1038/nature16455

    6. [6]

      Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Paul, J. A. Science 2011, 334, 643.  doi: 10.1126/science.1209786

    7. [7]

      Zhang, S.; Kang P, Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 7845.  doi: 10.1021/ja5031529

    8. [8]

      Egan, D. R. P.; Low, C. T. J.; Walsh, F. C. J. Phys. Sources 2011, 196, 5725.  doi: 10.1016/j.jpowsour.2011.01.008

    9. [9]

      Nier, A. O.; McElroy, M. B. J. Geophys. Res. 1977, 82, 4341.  doi: 10.1029/JS082i028p04341

    10. [10]

      Jiang, J.; Liu, X. F.; Zhao, S. Y.; He, P.; Zhou, H. S. Acta Chim. Sinica 2014, 72, 417.
       

    11. [11]

      Gu, D. M.; Zhang, C. M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L. S. Acta Chim. Sinica 2012, 70, 2115.
       

    12. [12]

      Cheng, F. Y.; Chen, J. Acta Chim. Sinica 2013, 71, 473.
       

    13. [13]

      Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Adv. Sci. 2018, 5, 2198.
       

    14. [14]

      Yang, S. X.; Qiao, Y.; He, P.; Liu, Y. J.; Cheng, Z.; Zhu, J. J.; Zhou, H. S. Energy Environ. Sci. 2017, 10, 972.  doi: 10.1039/C6EE03770D

    15. [15]

      Hu, X. F.; Li, Z. F.; Zhao, Y. R.; Sun, J. C.; Zhao, Q.; Wang, J. B.; Tao, Z. L.; Chen, J. Sci. Adv. 2017, 3, e1602396.
       

    16. [16]

      Al Sadat, W. I.; Archer, L. A. Sci. Adv. 2016, 2, e1600968.  doi: 10.1126/sciadv.1600968

    17. [17]

      Das, S. K.; Xu, S.; Archer, L. A. Electrochem. Commun. 2013, 27, 59.  doi: 10.1016/j.elecom.2012.10.036

    18. [18]

      Xu, S. M..; Das, S. K.; Archer, L. A. RSC Adv. 2013, 3, 6656  doi: 10.1039/c3ra40394g

    19. [19]

      Zhang, Z.; Zhang, Q.; Chen, Y. N.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Angew. Chem., Int. Ed. 2015, 54, 6550.  doi: 10.1002/anie.201501214

    20. [20]

      Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y. N.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Chem. Commun. 2015, 51, 14636.  doi: 10.1039/C5CC05767A

    21. [21]

      Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Angew. Chem., Int. Ed. 2016, 55, 6482.  doi: 10.1002/anie.201602504

    22. [22]

      Xu, S. M.; Lu, Y. Y.; Wang, H. S.; Abruna, H. D.; Archer, L. A. J. Mater. Chem. A 2014, 2, 17723.  doi: 10.1039/C4TA04130E

    23. [23]

      Xu, S. M. Ph. D. Dissertation, Cornell University, 2016.

    24. [24]

      Liu, Y.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Energy Environ. Sci. 2014, 7, 677.  doi: 10.1039/c3ee43318h

    25. [25]

      Yang, S.; He, P.; Zhou, H. Energy Environ. Sci. 2016, 3, 1650.

    26. [26]

      Yin, W.; Grimaud, A.; Azcarate, I.; Yang, C.; Tarascon, J. M. J. Phys. Chem. C 2018, 12, 6546.

    27. [27]

      Qie, L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Dai, L. M. Angew. Chem., Int. Ed. 2017, 56, 6970.  doi: 10.1002/anie.201701826

    28. [28]

      Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. J. Mater. Chem. A 2018, 6, 2792.  doi: 10.1039/C7TA11015D

    29. [29]

      Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Zhen. J. Mater. Chem. A 2018, 6, 3218.  doi: 10.1039/C7TA10497A

    30. [30]

      Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Cao, X.; Han, Y. Z.; Qi, P. F.; Wang, B. Energy Environ. Sci. 2018. DOI:10.1039/C8EE00415C.  doi: 10.1039/C8EE00415C

    31. [31]

      Hu, X.; Li, Z.; Chen, J. Angew. Chem., Int. Ed. 2017, 56, 5785.  doi: 10.1002/anie.201701928

    32. [32]

      Li, C.; Guo, Z. Y.; Yang, B. C.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Angew. Chem., Int. Ed. 2017, 56, 9126.  doi: 10.1002/anie.201705017

    33. [33]

      Takechi, K.; Singa, T.; Asaoka, T. Chem. Commun. 2011, 47, 3463.  doi: 10.1039/c0cc05176d

    34. [34]

      McCloskey, B. D.; Valery, A, ; Luntz, A. C.; Gowda, S. R.; Wallraff, G. M.; Garcia, J. M.; Mori, T.; Krupp, L. E.; J. M. J. Phys. Chem. Lett. 2013, 4, 2989.  doi: 10.1021/jz401659f

    35. [35]

      Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; Lepro, X.; Robles, R. O.; Baughman, R. H.; Kang, K. Angew. Chem., Int. Ed. 2014, 53, 3926.  doi: 10.1002/anie.201400711

    36. [36]

      Wang, R.; Yu, X.; Bai, J.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. J. Power Sources 2012, 218, 113.  doi: 10.1016/j.jpowsour.2012.06.082

    37. [37]

      Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C. Z.; Tarascon, J. M. J. Phys. Chem. Lett. 2016, 8, 214.

    38. [38]

      Xie, Z. J.; Zhang, X.; Zhang, Z.; Zhou, Z. Adv. Mater. 2017, 29, 1605891.  doi: 10.1002/adma.201605891

    39. [39]

      Nemeth, K.; Srajer, G. RSC Adv. 2014, 4, 1879.  doi: 10.1039/C3RA45528A

    40. [40]

      Takechi, K.; Shiga, T.; Asaoka, T. Chem. Commun. 2011, 47, 3463.  doi: 10.1039/c0cc05176d

    41. [41]

      Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733.  doi: 10.1021/ja4016765

    42. [42]

      Fang, C.; Luo, J. M.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Zhang, W. K.; Tao, X. Y. ACS Appl. Mater. Interfaces 2018, DOI:10.1021/acsami.8b04034.  doi: 10.1021/acsami.8b04034

    43. [43]

      Xu, S. M.; Lu, Y. Y.; Wang, H. S.; Abruna, H. D.; Archer, L. A. J. Mater. Chem. A 2014, 2, 17723.  doi: 10.1039/C4TA04130E

    44. [44]

      Gough, L. P.; Day, W. C. US Geological Survey 2010.

    45. [45]

      Scrosati, B.; Garche, J. J. Power Sources 2010, 195, 2419.  doi: 10.1016/j.jpowsour.2009.11.048

    46. [46]

      Gao, X. Y.; Xue, J. L.; Shi, G. J. TMS 2018, 99.
       

    47. [47]

      Kelley, C. S.; Fuller, J.; Carlin, R. T.; Wilkes, J. S. J. Electrochem. Soc. 1992, 139, 694.  doi: 10.1149/1.2069286

    48. [48]

      Peter, J. C. Energy Policy 2017, 106, 41.  doi: 10.1016/j.enpol.2017.03.039

    49. [49]

      Dymek, C. J.; Williams, J. L.; Groeger, D. J.; Auborn, J. J. J. Electrochem. Soc. 1984, 131, 2887.  doi: 10.1149/1.2115436

    50. [50]

      Revel, R.; Audichon, T.; Gonzalez, S. J. Power Sources 2014, 272, 415.  doi: 10.1016/j.jpowsour.2014.08.056

    51. [51]

      Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772.  doi: 10.1002/(ISSN)1521-3773

    52. [52]

      Peter, J. C. Energy Policy 2017, 106, 41.  doi: 10.1016/j.enpol.2017.03.039

    53. [53]

      Ficher, J.; Lehmann, T.; Heitz, E. J. Appl. Electrochem. 1981, 11, 743.  doi: 10.1007/BF00615179

    54. [54]

      Zheng, T. X.; Hu, Y. B.; Zhang, Y. X.; Yang, S. W.; Pan, F. S. Mater. Des. 2018, 137, 245.  doi: 10.1016/j.matdes.2017.10.031

    55. [55]

      Liang, F.; Hayashi, K. J. Electrochem. Soc. 2015, 162, A1.  doi: 10.1149/2.0221502jes

    56. [56]

      Kang, Y.; Liang, F.; Hayashi, K. Electrochim. Acta 2016, 218, 119.  doi: 10.1016/j.electacta.2016.09.113

    57. [57]

      Liang, F.; Qiu, X. C.; Zhang, Q. K.; Kang, Y.; Koo, A.; Hayashi, K.; Chen, K. F.; Xue, D. F.; Hui, K. N.; Yadegari, H.; Sun, X. L. Nano Energy 2018, 49, 574.  doi: 10.1016/j.nanoen.2018.04.074

    58. [58]

      Kang, Y.; Zou, D.; Zhang, J. Y.; Liang, F.; Hayashi, K.; Wang, H.; Xue, D. F.; Chen, K. F.; Adair, K. R.; Sun, X. L. Electrochim. Acta 2017, 224, 222.

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(46)
  • Abstract views(2556)
  • HTML views(592)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return