Citation: Chang Shilei, Liang Feng, Yao Yaochun, Ma Wenhui, Yang Bin, Dai Yongnian. Research Progress of Metallic Carbon Dioxide Batteries[J]. Acta Chimica Sinica, ;2018, 76(7): 515-525. doi: 10.6023/A18030125 shu

Research Progress of Metallic Carbon Dioxide Batteries

  • Corresponding author: Liang Feng, liangfeng@kmust.edu.cn
  • Received Date: 30 March 2018
    Available Online: 30 July 2018

    Fund Project: the the National Natural Science Foundation of China 51704136Project supported by the the National Natural Science Foundation of China (Nos. 51704136, 11765010), the Yunnan applied basic research project of China (No. 2016FB087) and the Yunnan Academy of Liberal Exploration Funds of China (No. 2017HA006)the Yunnan applied basic research project of China 2016FB087the Yunnan Academy of Liberal Exploration Funds of China 2017HA006the the National Natural Science Foundation of China 11765010

Figures(7)

  • Due to the heavy use of fossil fuels, the emission of carbon dioxide has been steadily increased and the climate has been deteriorated severely. In order to solve these problems, various physical and chemical methods were used to reduce the amount of carbon dioxide in the atmosphere, but the result is not so effective. Metal carbon dioxide batteries not only can capture carbon dioxide, but also can be used as clean energy storage devices. At the same time, the development and research of metal carbon dioxide batteries also promote the development of the electric vehicle industry towards a more economical, environmentally friendly and sustainable direction. Based on these advantages, metal carbon dioxide battery has developed rapidly in recent years. Li-CO2 batteries exhibit an extremely high discharge capacity of 17625 mAh/g and a cut-off capacity of 1000 mAh/g at a current density of 100 mA/g, running for 100 cycles at low overpotentials. Quasi-solid state Na-CO2 batteries are non-flammable and have strong electrolyte-locking ability. It can run 400 cycles at 500 mA/g with a fixed capacity of 1000 mAh/g in pure CO2. Its electrochemical performance has the potential to be further improved. Al-CO2 battery has good application prospects and economic benefits due to the low cost of Al as well as great economic value of the sodium aluminate as discharge product. Mg-CO2 battery shows a discharge voltage plateau of 0.9 V when the volume ratio of CO2/O2 is 1:1, which is higher than that of pure O2. This paper mainly introduces the research progress of metal (lithium, sodium, aluminum, and magnesium) carbon dioxide battery, and compares the electrochemical performance of metal (lithium, sodium) carbon dioxide battery with metal (lithium, sodium) oxygen battery, puts forward the current problems of metal carbon dioxide batteries, and provides the solutions. Finally, the future development of metal carbon dioxide batteries is reviewed.
  • 加载中
    1. [1]

      Friedlingstein, P.; Houghton, R. A.; Marland, G.; Hackler, J.; Boden, T. A.; Conway, T. J.; Canadell, J. G.; Raupach, M. R.; Ciais, P.; Quere, C. L. Nature Geosci. 2010, 3, 811.  doi: 10.1038/ngeo1022

    2. [2]

      Schrag, D. P. Science 2007, 315, 812.  doi: 10.1126/science.1137632

    3. [3]

      Kim, J.; Hyun, J. Y.; Chong, W. K.; Ariaratnam, S. J. Eng. Des. Technol. 2015, 15, 270.

    4. [4]

      Chen, B.; Nishio, M.; Song, Y. C.; Akai, M. Energy Procedia 2009, 1, 4969.  doi: 10.1016/j.egypro.2009.02.329

    5. [5]

      Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Nature 2016, 529, 68.  doi: 10.1038/nature16455

    6. [6]

      Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Paul, J. A. Science 2011, 334, 643.  doi: 10.1126/science.1209786

    7. [7]

      Zhang, S.; Kang P, Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 7845.  doi: 10.1021/ja5031529

    8. [8]

      Egan, D. R. P.; Low, C. T. J.; Walsh, F. C. J. Phys. Sources 2011, 196, 5725.  doi: 10.1016/j.jpowsour.2011.01.008

    9. [9]

      Nier, A. O.; McElroy, M. B. J. Geophys. Res. 1977, 82, 4341.  doi: 10.1029/JS082i028p04341

    10. [10]

      Jiang, J.; Liu, X. F.; Zhao, S. Y.; He, P.; Zhou, H. S. Acta Chim. Sinica 2014, 72, 417.
       

    11. [11]

      Gu, D. M.; Zhang, C. M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L. S. Acta Chim. Sinica 2012, 70, 2115.
       

    12. [12]

      Cheng, F. Y.; Chen, J. Acta Chim. Sinica 2013, 71, 473.
       

    13. [13]

      Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Adv. Sci. 2018, 5, 2198.
       

    14. [14]

      Yang, S. X.; Qiao, Y.; He, P.; Liu, Y. J.; Cheng, Z.; Zhu, J. J.; Zhou, H. S. Energy Environ. Sci. 2017, 10, 972.  doi: 10.1039/C6EE03770D

    15. [15]

      Hu, X. F.; Li, Z. F.; Zhao, Y. R.; Sun, J. C.; Zhao, Q.; Wang, J. B.; Tao, Z. L.; Chen, J. Sci. Adv. 2017, 3, e1602396.
       

    16. [16]

      Al Sadat, W. I.; Archer, L. A. Sci. Adv. 2016, 2, e1600968.  doi: 10.1126/sciadv.1600968

    17. [17]

      Das, S. K.; Xu, S.; Archer, L. A. Electrochem. Commun. 2013, 27, 59.  doi: 10.1016/j.elecom.2012.10.036

    18. [18]

      Xu, S. M..; Das, S. K.; Archer, L. A. RSC Adv. 2013, 3, 6656  doi: 10.1039/c3ra40394g

    19. [19]

      Zhang, Z.; Zhang, Q.; Chen, Y. N.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Angew. Chem., Int. Ed. 2015, 54, 6550.  doi: 10.1002/anie.201501214

    20. [20]

      Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y. N.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Chem. Commun. 2015, 51, 14636.  doi: 10.1039/C5CC05767A

    21. [21]

      Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Angew. Chem., Int. Ed. 2016, 55, 6482.  doi: 10.1002/anie.201602504

    22. [22]

      Xu, S. M.; Lu, Y. Y.; Wang, H. S.; Abruna, H. D.; Archer, L. A. J. Mater. Chem. A 2014, 2, 17723.  doi: 10.1039/C4TA04130E

    23. [23]

      Xu, S. M. Ph. D. Dissertation, Cornell University, 2016.

    24. [24]

      Liu, Y.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Energy Environ. Sci. 2014, 7, 677.  doi: 10.1039/c3ee43318h

    25. [25]

      Yang, S.; He, P.; Zhou, H. Energy Environ. Sci. 2016, 3, 1650.

    26. [26]

      Yin, W.; Grimaud, A.; Azcarate, I.; Yang, C.; Tarascon, J. M. J. Phys. Chem. C 2018, 12, 6546.

    27. [27]

      Qie, L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Dai, L. M. Angew. Chem., Int. Ed. 2017, 56, 6970.  doi: 10.1002/anie.201701826

    28. [28]

      Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. J. Mater. Chem. A 2018, 6, 2792.  doi: 10.1039/C7TA11015D

    29. [29]

      Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Zhen. J. Mater. Chem. A 2018, 6, 3218.  doi: 10.1039/C7TA10497A

    30. [30]

      Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Cao, X.; Han, Y. Z.; Qi, P. F.; Wang, B. Energy Environ. Sci. 2018. DOI:10.1039/C8EE00415C.  doi: 10.1039/C8EE00415C

    31. [31]

      Hu, X.; Li, Z.; Chen, J. Angew. Chem., Int. Ed. 2017, 56, 5785.  doi: 10.1002/anie.201701928

    32. [32]

      Li, C.; Guo, Z. Y.; Yang, B. C.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Angew. Chem., Int. Ed. 2017, 56, 9126.  doi: 10.1002/anie.201705017

    33. [33]

      Takechi, K.; Singa, T.; Asaoka, T. Chem. Commun. 2011, 47, 3463.  doi: 10.1039/c0cc05176d

    34. [34]

      McCloskey, B. D.; Valery, A, ; Luntz, A. C.; Gowda, S. R.; Wallraff, G. M.; Garcia, J. M.; Mori, T.; Krupp, L. E.; J. M. J. Phys. Chem. Lett. 2013, 4, 2989.  doi: 10.1021/jz401659f

    35. [35]

      Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; Lepro, X.; Robles, R. O.; Baughman, R. H.; Kang, K. Angew. Chem., Int. Ed. 2014, 53, 3926.  doi: 10.1002/anie.201400711

    36. [36]

      Wang, R.; Yu, X.; Bai, J.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. J. Power Sources 2012, 218, 113.  doi: 10.1016/j.jpowsour.2012.06.082

    37. [37]

      Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C. Z.; Tarascon, J. M. J. Phys. Chem. Lett. 2016, 8, 214.

    38. [38]

      Xie, Z. J.; Zhang, X.; Zhang, Z.; Zhou, Z. Adv. Mater. 2017, 29, 1605891.  doi: 10.1002/adma.201605891

    39. [39]

      Nemeth, K.; Srajer, G. RSC Adv. 2014, 4, 1879.  doi: 10.1039/C3RA45528A

    40. [40]

      Takechi, K.; Shiga, T.; Asaoka, T. Chem. Commun. 2011, 47, 3463.  doi: 10.1039/c0cc05176d

    41. [41]

      Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733.  doi: 10.1021/ja4016765

    42. [42]

      Fang, C.; Luo, J. M.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Zhang, W. K.; Tao, X. Y. ACS Appl. Mater. Interfaces 2018, DOI:10.1021/acsami.8b04034.  doi: 10.1021/acsami.8b04034

    43. [43]

      Xu, S. M.; Lu, Y. Y.; Wang, H. S.; Abruna, H. D.; Archer, L. A. J. Mater. Chem. A 2014, 2, 17723.  doi: 10.1039/C4TA04130E

    44. [44]

      Gough, L. P.; Day, W. C. US Geological Survey 2010.

    45. [45]

      Scrosati, B.; Garche, J. J. Power Sources 2010, 195, 2419.  doi: 10.1016/j.jpowsour.2009.11.048

    46. [46]

      Gao, X. Y.; Xue, J. L.; Shi, G. J. TMS 2018, 99.
       

    47. [47]

      Kelley, C. S.; Fuller, J.; Carlin, R. T.; Wilkes, J. S. J. Electrochem. Soc. 1992, 139, 694.  doi: 10.1149/1.2069286

    48. [48]

      Peter, J. C. Energy Policy 2017, 106, 41.  doi: 10.1016/j.enpol.2017.03.039

    49. [49]

      Dymek, C. J.; Williams, J. L.; Groeger, D. J.; Auborn, J. J. J. Electrochem. Soc. 1984, 131, 2887.  doi: 10.1149/1.2115436

    50. [50]

      Revel, R.; Audichon, T.; Gonzalez, S. J. Power Sources 2014, 272, 415.  doi: 10.1016/j.jpowsour.2014.08.056

    51. [51]

      Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772.  doi: 10.1002/(ISSN)1521-3773

    52. [52]

      Peter, J. C. Energy Policy 2017, 106, 41.  doi: 10.1016/j.enpol.2017.03.039

    53. [53]

      Ficher, J.; Lehmann, T.; Heitz, E. J. Appl. Electrochem. 1981, 11, 743.  doi: 10.1007/BF00615179

    54. [54]

      Zheng, T. X.; Hu, Y. B.; Zhang, Y. X.; Yang, S. W.; Pan, F. S. Mater. Des. 2018, 137, 245.  doi: 10.1016/j.matdes.2017.10.031

    55. [55]

      Liang, F.; Hayashi, K. J. Electrochem. Soc. 2015, 162, A1.  doi: 10.1149/2.0221502jes

    56. [56]

      Kang, Y.; Liang, F.; Hayashi, K. Electrochim. Acta 2016, 218, 119.  doi: 10.1016/j.electacta.2016.09.113

    57. [57]

      Liang, F.; Qiu, X. C.; Zhang, Q. K.; Kang, Y.; Koo, A.; Hayashi, K.; Chen, K. F.; Xue, D. F.; Hui, K. N.; Yadegari, H.; Sun, X. L. Nano Energy 2018, 49, 574.  doi: 10.1016/j.nanoen.2018.04.074

    58. [58]

      Kang, Y.; Zou, D.; Zhang, J. Y.; Liang, F.; Hayashi, K.; Wang, H.; Xue, D. F.; Chen, K. F.; Adair, K. R.; Sun, X. L. Electrochim. Acta 2017, 224, 222.

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(45)
  • Abstract views(2454)
  • HTML views(566)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return