Citation: Li Haofei, Qiao Fulin, Fan Yaxun, Wang Yilin. Aggregation in the Mixture of Branched Carboxylate Salts and Sulfonate Surfactants with Different Oligomeric Degrees[J]. Acta Chimica Sinica, ;2018, 76(7): 564-574. doi: 10.6023/A18030086 shu

Aggregation in the Mixture of Branched Carboxylate Salts and Sulfonate Surfactants with Different Oligomeric Degrees

  • Corresponding author: Wang Yilin, yilinwang@iccas.ac.cn
  • Received Date: 3 March 2018
    Available Online: 3 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21633002)the National Natural Science Foundation of China 21633002

Figures(7)

  • Understanding the effects of molecules with branched structures on surface activities and micellization of star-shaped oligomeric surfactants will promote the applications of oligomeric surfactants. The present work has studied the interactions and aggregation of branched carboxylate 2-hexyldecanoic acid (HDA) and 2, 2, 4, 8, 10, 10-hexamethylundecane-5-carboxylic acid (HMLCA) with single chain sodium dodecyl sulfonate (SDoS) and star-shaped tetrameric sulfonate surfactant (EDA-(C12SO3Na)4) in aqueous solution of pH 11 by surface tension, ζ-Potential and small angle neutron scattering (SANS). Surface tension measurements have shown that the addition of HDA or HMLCA can significantly reduce the surface tension at critical micellar concentration (CMC), meanwhile, the CMC values increase slightly as the mole fraction of HDA or HMLCA increases. The interaction parameter (β), calculated according to the non-ideal mixed solution model, indicate that different interaction degrees exist between branched carboxylate and sulfonate surfactant on surface activities and micellization. The four mixtures all exhibit synergism in surface tension reduction efficiency. The mixtures of single chain sulfonate surfactant and branched carboxylate also exhibit synergism in micelle formation, whereas the mixtures of tetrameric sulfonate surfactant and branched carboxylate do not, although the attractive interaction of HDA/EDA-(C12SO3Na)4 and HMLCA/EDA-(C12SO3Na)4 is stronger than that of HDA/SDoS and HMLCA/SDoS in mixed micelles. Taking HDA as a representative, SANS and ζ-Potential results reveal that the addition of HDA into these two sulfonate surfactants leads to different aggregate transitions in the solution. For HDA/SDoS, when the molar fraction of HDA (XHDA) is constant and the total surfactant concentration increases, spherical micelles transfer into rod-like micelles. For the HDA/EDA-(C12SO3Na)4 mixture, the rod-like micelles become shorter as XHDA increases at a fixed total surfactant concentration, while the rod-like micelles are growing longer with increasing XHDA at a fixed total surfactant concentration. This observation suggests that the branched structure of carboxylates can improve the aggregation ability of the mixed system. In addition these mixtures show excellent performance at emulsifying dodecane, and HDA or HMLCA can greatly reduce the dosage of sulfonate surfactants.
  • 加载中
    1. [1]

      Zana, R. Adv. Colloid Interface Sci. 2002, 97, 205.  doi: 10.1016/S0001-8686(01)00069-0

    2. [2]

      Han, Y. C.; Fan, Y. X.; Wu, C. X.; Hou, Y. B.; Wang, Y. L. Sci. Sin. Chem. 2015, 45, 327(in Chinese).
       

    3. [3]

      Yoshimura, T.; Ohno, A.; Esumi, K. J. Colloid Interface Sci. 2004, 272, 191.  doi: 10.1016/j.jcis.2003.12.021

    4. [4]

      Yoshimura, T.; Yoshida, H.; Ohno, A.; Esumi, K. J. Colloid Interface Sci. 2003, 267, 167.  doi: 10.1016/S0021-9797(03)00694-5

    5. [5]

      In, M.; Bec, V.; Aguerre-Chariol, O.; Zana, R. Langmuir 2000, 16, 141.  doi: 10.1021/la990645g

    6. [6]

      In, M.; Aguerre-Chariol, O.; Zana, R. J. Phys. Chem. B 1999, 103, 7747.  doi: 10.1021/jp9919922

    7. [7]

      Danino, D.; Talmon, Y.; Levy, H.; Zana, R. Science 1995, 269, 1420.  doi: 10.1126/science.269.5229.1420

    8. [8]

      Esumi, K.; Taguma, K.; Koide, Y. Langmuir 1996, 12, 4039.  doi: 10.1021/la960230k

    9. [9]

      Kastner, U.; Zana, R. J. Colloid Interface Sci. 1999, 218, 468.  doi: 10.1006/jcis.1999.6438

    10. [10]

      Zana, R.; Levy, H.; Papoutsi, D.; Beinert, G. Langmuir 1995, 11, 3694.  doi: 10.1021/la00010a018

    11. [11]

      Menger, F. M.; Migulin, V. A. J. Org. Chem. 1999, 64, 8916.  doi: 10.1021/jo9912350

    12. [12]

      Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Ed. 2000, 39, 1906.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Laschewsky, A.; Wattebled, L.; Arotcarena, M.; Habib-Jiwan, J.; Rakotoaly, R. H. Langmuir 2005, 21, 7170.  doi: 10.1021/la050952o

    14. [14]

      Wattebled, L.; Laschewsky, A.; Moussa, A.; Habib-Jiwan, J. Langmuir 2006, 22, 2551.  doi: 10.1021/la052414h

    15. [15]

      Yoshimura, T.; Esumi, K. Langmuir 2003, 19, 3535.  doi: 10.1021/la026762k

    16. [16]

      Sumida, Y.; Oki, T.; Masuyama, A.; Maekawa, H.; Nishiura, M.; Kida, T.; Nakatsuji, Y.; Ikeda, I.; Nojima, M. Langmuir 1998, 14, 7450.  doi: 10.1021/la980814h

    17. [17]

      Hou, Y. B.; Han, Y. C.; Deng, M. L.; Xiang, J. F.; Wang, Y. L. Langmuir 2010, 26, 28.  doi: 10.1021/la903672r

    18. [18]

      Wu, C. X.; Hou, Y. B.; Deng, M. L.; Huang, X.; Xiang, J. F.; Liu, Y.; Li, Z. B.; Wang, Y. L. Langmuir 2010, 26, 7922.  doi: 10.1021/la9048067

    19. [19]

      Fan, Y. X.; Hou, Y. B.; Xiang, J. F.; Yu, D. F.; Wu, C. X.; Tian, M. Z.; Wang, Y. L. Langmuir 2011, 27, 10570.  doi: 10.1021/la202453c

    20. [20]

      Murguia, M. C.; Cabrera, M. I.; Guastavino, J. E.; Grau, R. J. Colloids Surf., A 2005, 262, 1.  doi: 10.1016/j.colsurfa.2005.03.018

    21. [21]

      Zhou, C. C.; Wang, F. Y.; Chen, H.; Li, M.; Qiao, F. L.; Liu, Z.; Hou, Y. B.; Wu, C. X.; Fan, Y. X.; Liu, L. B.; Wang, S.; Wang, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 4242.  doi: 10.1021/acsami.5b12688

    22. [22]

      Zhou, C. C.; Wang, D.; Cao, M. W.; Chen, Y.; Liu, Z.; Wu, C. X.; Xu, H.; Wang, S.; Wang, Y. L. ACS Appl Mater Interfaces 2016, 8, 30811.  doi: 10.1021/acsami.6b11667

    23. [23]

      Jurasin, D.; Habus, I.; Filipovic-Vincekovic, N. Colloids Surf., A 2010, 368, 119.  doi: 10.1016/j.colsurfa.2010.07.025

    24. [24]

      Qiao, F. L.; Wang, M. N.; Liu, Z.; Fan, Y. X.; Wang, Y. L. Chem. Asian J. 2016, 11, 2763.  doi: 10.1002/asia.201600432

    25. [25]

      Tian, M. Z.; Fan, Y. X.; Ji, G.; Wang, Y. L. Langmuir 2012, 28, 12005.  doi: 10.1021/la301762g

    26. [26]

      Wang, T. F.; Shang, Y. Z.; Peng, C. J.; Liu, H. L. Acta Chim. Sinica 2009, 67, 1159(in Chinese).
       

    27. [27]

      Sadeghi, R.; Shahabi, S. J. Chem. Thermodynamics 2011, 43, 1361.  doi: 10.1016/j.jct.2011.04.012

    28. [28]

      Xu, G. Y.; Gu, Y. H.; Zeng, L. R.; Zhu, H. P.; Mao, H. Z. Acta Phys. Chim. Sin. 1992, 8, 352(in Chinese).  doi: 10.3866/PKU.WHXB19920313

    29. [29]

      Zhu, B. Y.; Zhao, G. X. Fine Chemicals 1985, 2, 1(in Chinese).
       

    30. [30]

      Vora, S.; George, A.; Desai, H.; Bahadur, P. J. Surfactants Deterg. 1999, 2, 213.  doi: 10.1007/s11743-999-0076-5

    31. [31]

      Singh, O. G.; Ismail, K. J. Surfactants Deterg. 2008, 11, 89.  doi: 10.1007/s11743-007-1058-y

    32. [32]

      Azum, N.; Naqvi, A. Z.; Akram, M.; Kabir-ud-Din J. Colloid Interface Sci. 2008, 328, 429.  doi: 10.1016/j.jcis.2008.09.034

    33. [33]

      Xue, J. Y.; Liu, T. S.; Liu, Y. C. J. Dispersion Sci. Technol. 2012, 33, 599.  doi: 10.1080/01932691.2010.548279

    34. [34]

      Hayter, J. B.; Penfold, J. Colloid Polym. Sci. 1983, 261, 1022.  doi: 10.1007/BF01421709

    35. [35]

      Tanford, C. J. Phys. Chem. 1972, 76, 3020.  doi: 10.1021/j100665a018

    36. [36]

      Chen, Z. D.; Penfold, J.; Li, P. X.; Doutch, J.; Fan, Y. X.; Wang, Y. L. Soft Matter 2017, 13, 8980.  doi: 10.1039/C7SM02058A

    37. [37]

      Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984.  doi: 10.1021/j100234a030

    38. [38]

      Rosen, M. J.; Gao, T.; Nakatsuji, Y.; Masuyama, A. Colloids Surf., A 1994, 88, 1.  doi: 10.1016/0927-7757(94)80080-4

    39. [39]

      Liu, L.; Rosen, M. J. J. Colloid Interface Sci. 1996, 179, 454.  doi: 10.1006/jcis.1996.0237

  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    3. [3]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(4)
  • Abstract views(1500)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return