Citation: Guan Honghao, Chen Lei, Liu Lei. Oxidative C—H Alkynylation of Unactivated Acyclic Ethers[J]. Acta Chimica Sinica, ;2018, 76(6): 440-444. doi: 10.6023/A18030083 shu

Oxidative C—H Alkynylation of Unactivated Acyclic Ethers

  • Corresponding author: Liu Lei, leiliu@sdu.edu.cn
  • Received Date: 1 March 2018
    Available Online: 9 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21722204, 21472112) and Fok Ying Tung Education Foundation (No. 151035)the National Natural Science Foundation of China 21722204the National Natural Science Foundation of China 21472112Fok Ying Tung Education Foundation 151035

Figures(3)

  • C—C bond forming reactions through cross-dehydrogenative coupling (CDC) of two readily available C—H components under oxidative conditions have emerged as one of the most straightforward and economical approaches for increasing molecular complexity and functional group content with minimal waste generation. CDC reactions involving oxidative functionalization of sp3 C—H bonds of both cyclic and acyclic amines with diverse partners have been extensively explored. In sharp contrast, the CDC of corresponding ether substrates remains relatively underdeveloped. Current approaches predominantly focus on cyclic ethers as well as acyclic benzylic ethers. The CDC reaction of extensively existing unactivated acyclic ethers proved to be much more challenging, which might be ascribed to their inherent low reactivity. On the other hand, the existing protocols for unactivated ethers rely heavily on peroxide-mediated oxidation systems, which typically required high temperature and a large excess of ether substrates as the solvent. Accordingly, coupling partners that can be compatible with such harsh conditions are largely restricted to sp2 or sp3 C—H reagents with relatively low manipulation capability, such as arenes, heteroarenes, and 1, 3-dicarbonyl moieties. Alkynes represent common structural motifs spread across the fields of biology, chemistry, material science, and medicine, and act as global handles for diverse functionalities. Therefore, the development of a mild approach for CDC of unactivated acyclic ethers with terminal alkynes is highly desired. In 2014, our group developed a mild Ph3CCl/GaCl3 mediated oxidation system, allowing to achieve the oxidative C—H alkynylation of tetrahydrofuran with organoboranes. Herein, we reported the first CDC of unactivated acyclic ethers with terminal alkynes promoted by Ph3CCl/GaCl3. The reaction proceeded at room temperature in CH2Cl2, thus avoiding the employment of excess ether as the solvent. The typical procedure is as follows:a mixture of unactivated acyclic ether (2.0 mmol), terminal alkyne (0.1 mmol), Ph3CCl (0.1 mmol), and CuI (0.03 mmol) in CH2Cl2 at r.t. was added GaCl3 (0.1 mmol) in a glove box to afford the expected coupling products in moderate to good yields. The Ph3CCl/GaCl3 mediated oxidative C—H alkynylation of unactivated acyclic ethers with alkyl substituted alkynylboranes was further established to overcome the relative low efficiency for the CDC reaction involving alkyl substituted terminal alkynes.
  • 加载中
    1. [1]

      (a) Godula, K. ; Sames, D. Science 2006, 312, 67; (b) Davies, H. M. L. Angew. Chem., Int. Ed. 2006, 45, 6422; (c) Gutekunst, W. R. ; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976; (d) Giri, R. ; Shi, B. F. ; Engle, K. M. ; Maugel, N. ; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.

    2. [2]

    3. [3]

      (a) Wender, P. A. ; Verma, V. A. ; Paxton, T. J. ; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40; (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.

    4. [4]

      For cross-dehydrogenative coupling of amines, see: (a) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810; (b) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672; (c) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968; (d) Li, Z. ; Yu, R. ; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497; (e) Murahashi, S. I. ; Nakae, T. ; Terai, H. ; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005; (f) Yang, F. ; Li, J. ; Xie, J. ; Huang, Z. -Z. Org. Lett. 2010, 12, 5214; (g) Hari, D. P. ; König, B. Org. Lett. 2011, 13, 3852; (h) Boess, E. ; Sureshkumar, D. ; Sud, A. ; Wirtz, C. ; Farès, C. ; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106; (i) Richter, H. ; García Mancheño, O. Eur. J. Org. Chem. 2010, 4460; (j) Meng, Q. -Y. ; Zhong, J. -J. ; Liu, Q. ; Gao, X. -W. ; Zhang, H. -H. ; Lei, T. ; Li, Z. -J. ; Feng, K. ; Chen, B. ; Tung, C. -H. ; Wu, L. -Z. J. Am. Chem. Soc. 2013, 135, 19052; (k) Liu, X. ; Sun, B. ; Xie, Z. ; Qin, X. ; Liu, L. ; Lou, H. J. Org. Chem. 2013, 78, 3104; (l) Xie, Z. ; Liu, L. ; Chen, W. ; Zheng, H. ; Xu, Q. ; Yuan, H. ; Lou, H. Angew. Chem., Int. Ed. 2014, 53, 3904; (m) Wu, C. -J. ; Zhong, J. -J. ; Meng, Q. -Y. ; Lei, T. ; Gao, X. -W. ; Tung, C. -H. ; Wu, L. -Z. Org. Lett. 2015, 17, 884; (n) Long, H. ; Wang, G. ; Lu, R. ; Xu, M. ; Zhang, K. ; Qi, S. ; He, Y. ; Bu, Y. ; Liu, L. Org. Lett. 2017, 19, 2146.

    5. [5]

      For asymmetric cross-dehydrogenative coupling of amines, see: (a) Zhang, J. ; Tiwari, B. ; Xing, C. ; Chen, X. ; Chi, Y. R. Angew. Chem., Int. Ed. 2012, 51, 3649; (b) Zhang, G. ; Zhang, Y. ; Wang, R. ; Angew. Chem., Int. Ed. 2011, 50, 10429; (c) Zhang, G. ; Ma, Y. ; Wang, S. ; Kong, W. ; Wang, R. Chem. Sci. 2013, 4, 2645; (d) Neel, A. J. ; Hehn, J. P. ; Tripet, P. F. ; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044; (e) Liu, X. ; Sun, S. ; Meng, Z. ; Lou, H. ; Liu, L. Org. Lett. 2015, 17, 2396; (f) Xie, Z. ; Liu, X. ; Liu, L. Org. Lett. 2016, 18, 2982; (g) Xie, Z. ; Zan, X. ; Sun, S. ; Pan, X. ; Liu, L. Org. Lett. 2016, 18, 3944; (h) Yang, Q. ; Zhang, L. ; Ye, C. ; Luo, S. ; Wu, L. -Z. ; Tung, C. -H. Angew. Chem., Int. Ed. 2017, 56, 3694; (i) Fu, N. ; Li, L. ; Yang, Q. ; Luo, S. Org. Lett. 2017, 19, 2122.

    6. [6]

      For cross-dehydrogenative coupling of cyclic benzylic ethers, see: (a) Zhang, Y. H. ; Li, C. J. J. Am. Chem. Soc. 2006, 128, 4242; (b) Zhang, Y. H. ; Li, C. J. Angew. Chem., Int. Ed. 2006, 45, 1949; (c) Ghobrial, M. ; Harhammer, K. ; Mihovilovic, M. D. ; Schnürch, M. Chem. Commun. 2010, 46, 8836; (d) Correia, C. A. ; Li, C. J. Heterocycles 2010, 82, 555; (e) Richter, H. ; Rohlmann, R. ; García Mancheño, O. Chem. Eur. J. 2011, 17, 11622; (f) Xiang, S. -K. ; Zhang, B. ; Zhang, L. -H. ; Cui, Y. ; Jiao, N. Sci. China Chem. 2012, 55, 50; (g) Park, S. J. ; Price, J. R. ; Todd, M. H. J. Org. Chem. 2012, 77, 949; (h) Liu, X. ; Sun, B. ; Xie, Z. ; Qin, X. ; Liu, L. ; Lou, H. J. Org. Chem. 2013, 78, 3104; (i) Chen, W. ; Xie, Z. ; Zheng, H. ; Lou, H. ; Liu, L. Org. Lett. 2014, 16, 5988.

    7. [7]

      Asymmetric cross-dehydrogenative coupling of cyclic benzylic ethers, see: Meng, Z. ; Sun, S. ; Yuan, H. ; Lou, H. ; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.

    8. [8]

      For cross-dehydrogenative coupling of unactivated cyclic ethers, see: (a) Wu, Z. ; Pi, C. ; Cui, X. ; Bai, J. ; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971; (b) Huang, X. -F. ; Zhu, Z. -Q. ; Huang, Z. -Z. Tetrahedron 2013, 69, 8579; (c) Liu, D. ; Liu, C. ; Li, H. ; Lei, A. Chem. Commun. 2014, 50, 3623; (d) Wei, W. -T. ; Song, R. -J. ; Li, J. -H. Adv. Synth. Catal. 2014, 356, 1703; (e) Jin, J. ; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565; (f) Jin, L. ; Feng, J. ; Lu, G. ; Cai, C. Adv. Synth. Catal. 2015, 357, 2105; (g) Niu, B. ; Zhao, W. ; Ding, Y. ; Bian, Z. ; Pittman Jr. C. U. ; Zhou, A. ; Ge, H. J. Org. Chem. 2015, 80, 7251; (h) Li, Q. ; Hu, W. ; Hu, R. ; Lu, H. ; Li, G. Org. Lett. 2017, 19, 4676; (i) Liu, S. ; Liu, A. ; Zhang, Y. ; Wang, W. Chem. Sci. 2017, 8, 4044; (j) Liu, D. ; Liu, C. ; Lei A. Angew. Chem., Int. Ed. 2013, 52, 4453; (k) Yang, Q. ; Choy, P. Y. ; Wu, Y. ; Fan, B. ; Kwong, F. Y. Org. Biomol. Chem. 2016, 14, 2608; (l) Zhang, L. ; Yi, H. ; Wang, J. ; Lei, A. J. Org. Chem. 2017, 82, 10704; (m) Wu, J. ; Zhou, Y. ; Zhou, Y. ; Chiang, C. -W. ; Lei, A. ACS Catal. 2017, 7, 8320; (n) Xie, Z. ; Cai, Y. ; Hu, H. ; Lin, C. ; Jiang, J. ; Chen, Z. ; Wang, L. ; Pan, Y. Org. Lett. 2013, 15, 4600; (o) Zhou, L. ; Tang, S. ; Qi, X. ; Lin, C. ; Liu, K. ; Liu, C. ; Lan, Y. ; Lei, A. Org. Lett. 2014, 16, 3404; (p) Tang, S. ; Wang, P. ; Li, H. ; Lei, A. Nat. Commun. 2016, 7, 11676.

    9. [9]

      For cross-dehydrogenative coupling of acyclic benzylic ethers, see: (a) Liu, L. ; Floreancig, P. E. Org. Lett. 2009, 11, 3152; (b) Xie, Y. ; Yu, M. ; Zhang, Y. Synthesis 2011, 17, 2803.

    10. [10]

      Diederich, F. ; Stang, P. J. ; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH, Weinheim, 2005.

    11. [11]

      Wan, M.; Meng, Z.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 13845.  doi: 10.1002/anie.201407083

    12. [12]

      Zhang, Q.; Lv, J.; Luo, S. Acta Chim. Sinica 2016, 74, 61(in Chinese).  doi: 10.3866/PKU.WHXB201511101
       

    13. [13]

      Usugi, S.-i.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2002, 75, 2687.  doi: 10.1246/bcsj.75.2687

    14. [14]

      In-situ generated carbocation oxidation system shows better reactivity than pre-prepared one. At present, the origin of this difference in activity is still unknown.

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    4. [4]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    19. [19]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(5)
  • Abstract views(1539)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return