Citation: Xu Jie, Wei Yuchen, Wu Zhiwei, Yi Zhongsheng. Spectral and Computational Simulations of HSA and BDE154 Based on Acidity Induction[J]. Acta Chimica Sinica, ;2018, 76(5): 408-414. doi: 10.6023/A18020060 shu

Spectral and Computational Simulations of HSA and BDE154 Based on Acidity Induction

  • Corresponding author: Yi Zhongsheng, yzs@glut.edu.cn
  • Received Date: 6 February 2018
    Available Online: 11 May 2018

    Fund Project: the National Natural Science Foundation of China 21565012the National Natural Science Foundation of China 21467006the Guangxi Natural Science Foundation of China 2017GXNSFAA198354Project supported by the National Natural Science Foundation of China (Nos. 21467006 and 21565012) and the Guangxi Natural Science Foundation of China (2017GXNSFAA198354)

Figures(4)

  • In this paper, human serum albumin (HSA) binding to small molecule 2, 2', 4, 4', 5, 6'-hexabromodiphenyl ether (BDE154) is studied by means of inducing protonation or deprotonation at four different pH levels (pH=3.0, 6.0, 7.4, 9.0). Firstly, it has been indicated that the charge distribution on HSA is very uniform even after protonation of HSA at different pH levels. From this, it can be inferred that the uniform charge distribution makes the electrostatic forces between the amino acid residues of the ⅡA region of HSA aspartic acid (Asp), glutamate (Glu) and histidine (His) to gradually reach a relative equilibrium and thus stabilize the HSA conformation. The results from synchronous fluorescence spectroscopy show that BDE154 has been bind to the ⅡA region of HSA, and is more closely to tryptophan (Try), and that causes the fluorescence quenching of HSA. After that, the semi-flexible docking of HSA with BDE 154 reveals that BDE154 has a cationic-π-conjugated effect and strong hydrophobic interaction with the surrounding amino acids, such as tyrosine 150 (Tyr150), lysine 195 (Lys195), lysine 199 (Lys199), etc. Next, the dynamic and thermodynamic properties of HSA under different protonation conditions have been studied by using molecular dynamic simulation. The results of simulation also show that too much positive charge deteriorates the system stability of HSA or HSA-BDE154 complex. Then, the binding free energy of HSA-BDE154 complex under different protonation states has been predicted by MM-PBSA method, and the contribution of amino acid residues to free energy of binding has also been analyzed. In addition, lysine 199 (Lys199), leucine 238 (Leu238), arginine 257 (Arg257), alanine 261 (Ala261), and isoleucine 264 (Ile264) in the HSA, being located in the hydrophobic cavity in subdomain ⅡA, are the most important residues when binding with BDE154. Therefore, the hydrophobic interaction has been identified as the major driving force for the binding between HSA-BDE154 systems, which is consistent with the results of molecular docking and the analysis of binding free energy. Finally, the results of secondary structure analysis of molecular dynamics simulation show that the binding could promote the de-helix process of HSA by increasing the acidity in HSA-BDE154 complex system.
  • 加载中
    1. [1]

      Allard, J. F.; Dushek, O.; Coombs, D.; Van Der Merwe; P. A. Biophys. J. 2012, 102, 1265.  doi: 10.1016/j.bpj.2012.02.006

    2. [2]

      Rich, R. L.; Hoth, L. R.; Geoghegan, K. F.; Brown, T. A.; LeMotte, P. K.; Simons, S. P.; Hensley, P.; Myszka, D. G. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 8562.  doi: 10.1073/pnas.142288199

    3. [3]

      Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Kotzyba-Hibert, F.; Lehn, J. M.; Prodi, L. J. Am. Chem. Soc. 1994, 116, 5741.  doi: 10.1021/ja00092a026

    4. [4]

      Agasti, S. S.; Liong, M.; Tassa, C.; Chung, H. J.; Shaw, S. Y.; Lee, H.; Weissleder, R. Angew. Chem. Int. Ed. 2012, 51, 450.  doi: 10.1002/anie.201105670

    5. [5]

      Gellman, S. H. Chem. Rev. 1997, 97, 1231.  doi: 10.1021/cr970328j

    6. [6]

      Berde, C. B.; Hudson, B. S.; Simoni, R. D.; Sklar, L. A. J. Biol. Chem. 1979, 254, 391.
       

    7. [7]

      Schneider, H. J.; Yatsimirsky, A. K. Chem. Soc. Rev. 2008, 37, 263.  doi: 10.1039/B612543N

    8. [8]

      Pal, B.; Bajpai, P. K.; Baul, T. B. Spectrochim. Acta A 2000, 56, 2453.  doi: 10.1016/S1386-1425(00)00320-6

    9. [9]

      Lyon, C. E.; Suh, E. S.; Dobson, C. M.; Hore, P. J. J. Am. Chem. Soc. 2002, 124, 13018.  doi: 10.1021/ja020141w

    10. [10]

      Cheng, L. T.; Wang, Z.; Setny, P.; Dzubiella, J.; Li, B.; McCammon, J. A. J. Chem. Phys. 2009, 131, 144102.  doi: 10.1063/1.3242274

    11. [11]

      Ma, M.; Paredes, A., Bong, D. J. Am. Chem. Soc. 2008, 130, 14456.  doi: 10.1021/ja806954u

    12. [12]

      Bader, A. N.; van Dongen, M. M.; van Lipzig, M. M.; Kool, J.; Meerman, J. H.; Ariese, F.; Gooijer, C. Chem. Res. Toxicol. 2005, 18, 1405.  doi: 10.1021/tx050056c

    13. [13]

      Colquhoun, H. M.; Zhu, Z.; Williams, D. J. Org. Lett. 2003, 5, 4353.  doi: 10.1021/ol035626j

    14. [14]

      Branco, T. J. F.; Ferreira, L. V.; do Rego, A. B.; Oliveira, A. S.; Da Silva, J. P. Photochem. Photobiol. Sci. 2006, 5, 1068.  doi: 10.1039/B608833C

    15. [15]

      Baudry, R.; Kalchenko, O.; Dumazet-Bonnamour, I.; Vocanson, F.; Lamartine, R. J. Chromatogr. Sci. 2003, 41, 157.  doi: 10.1093/chromsci/41.3.157

    16. [16]

      Xiao, Z.-Y.; Lin, R.-L.; Tao, Z.; Liu, Q.-Y.; Liu, J.-X.; Xiao, X. Org. Chem. Front. 2017, 4, 2422.  doi: 10.1039/C7QO00708F

    17. [17]

      Baudoin, O.; Gonnet, F.; Teulade-Fichou, M. P.; Vigneron, J. P.; Tabet, J. C., Lehn, J. M. Chem. Eur. J. 1999, 5, 2762.  doi: 10.1002/(ISSN)1521-3765

    18. [18]

      Kukić, P.; Nielsen; J. E. Future Med. Chem. 2010, 2, 647.  doi: 10.4155/fmc.10.6

    19. [19]

      Jakoby IV, M. G.; Miller, K. R.; Toner, J. J.; Bauman, A.; Cheng, L.; Li, E.; Cistola, D. P. Biochemistry 1993, 32, 872.  doi: 10.1021/bi00054a019

    20. [20]

      Quan, X.; Dong, J.; Zhou, J. Acta Chim. Sinica 2014, 72, 1075.  doi: 10.7503/cjcu20140006
       

    21. [21]

      Li, L.; Lü, M.; Lu, K.; Liu, G.; Peng, L. Chin. J. Org. Chem. 2018, 38, 246.
       

    22. [22]

      Linderstrøm-Lang, K. C. R. Trav. Lab. Carlsberg 1924, 15, 1.
       

    23. [23]

      Shishkov, I. F.; Khristenko, L. V.; Rudakov, F. M.; Vilkov, L. V.; Karlov, S. S.; Zaitseva, G. S.; Samdal, S. J. Mol. Struct. 2002, 641, 199.  doi: 10.1016/S0022-2860(02)00339-3

    24. [24]

      Bhattacharya, B.; Nakka, S.; Guruprasad, L.; Samanta, A. J. Phys. Chem. B 2009, 113, 2143.  doi: 10.1021/jp808611b

    25. [25]

      Jang, H.; Hall, C. K.; Zhou, Y. Biophys. J. 2002, 83, 819.  doi: 10.1016/S0006-3495(02)75211-9

    26. [26]

      de Oliveira, C. A. F.; Guimarães, C. R. W.; Barreiro, G.; de Alencastro, R. B. Proteins 2003, 52, 483.  doi: 10.1002/prot.10403

    27. [27]

      Bolel, P.; Datta, S.; Mahapatra, N.; Halder, M. J. Phys. Chem. B 2014, 118, 26.  doi: 10.1021/jp407057f

    28. [28]

      Baler, K.; Martin, O. A.; Carignano, M. A.; Ameer, G. A.; Vila, J. A.; Szleifer, I. J. Phys. Chem. B 2014, 118, 921.  doi: 10.1021/jp409936v

    29. [29]

      Meyer, B.; Peters, T. Angew. Chem. Int. Ed. 2003, 42, 864.  doi: 10.1002/anie.200390233

    30. [30]

      Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, 646.  doi: 10.1038/nsb0902-646

    31. [31]

      Zhang, Y.; Wu, S.; Qin, Y.; Liu, J.; Liu, J.; Wang, Q.; Ren, F.; Zhang, H. Food Chem. 2018, 240, 1072.  doi: 10.1016/j.foodchem.2017.07.100

    32. [32]

      De Wit, C. A. Chemosphere 2002, 46, 583.  doi: 10.1016/S0045-6535(01)00225-9

    33. [33]

      Zhao, N.; Xuan, S.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. J. Org. Chem. 2017, 82, 3880.  doi: 10.1021/acs.joc.6b02981

    34. [34]

      Balamurugan, R.; Stalin, A.; Ignacimuthu, S. Eur. J. Med. Chem. 2012, 47, 38.  doi: 10.1016/j.ejmech.2011.10.007

    35. [35]

      Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. Nucleic Acids Res. 2007, 35, 522.  doi: 10.1093/nar/gkm276

    36. [36]

      Li, Y.; Liu, X.; Dong, X.; Zhang, L.; Sun, Y. Langmuir 2014, 30, 8500.  doi: 10.1021/la5017438

    37. [37]

      Aliev, A. E.; Kulke, M.; Khaneja, H. S.; Chudasama, V.; Sheppard, T. D.; Lanigan, R. M. Proteins:Structure, Function, and Bioinformatics 2014, 82, 195-215.  doi: 10.1002/prot.24350

    38. [38]

      Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.  doi: 10.1063/1.464397

    39. [39]

      Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1977, 23, 327.  doi: 10.1016/0021-9991(77)90098-5

    40. [40]

      Sudhamalla, B.; Gokara, M.; Ahalawat, N.; Amooru, D. G.; Subramanyam, R. J. Phys. Chem. B 2010, 114, 9054.  doi: 10.1021/jp102730p

    41. [41]

      Baler, K.; Martin, O. A.; Carignano, M. A.; Ameer, G. A.; Vila, J. A.; Szleifer, I. J. Phys. Chem. B 2014, 118, 921.  doi: 10.1021/jp409936v

    42. [42]

      Jiang, Q.; Zhang, Z.; Liu, Y.; Yao, N.; Wang, J. Chin. J. Org. Chem. 2017, 37, 1814.
       

    43. [43]

      Lu, Z.; Qi, L.; Li, G.-X.; Li, Q.; Sun, G.-H.; Xie, R.-Z. J. Solution Chem. 2014, 43, 2010.  doi: 10.1007/s10953-014-0256-2

    44. [44]

      Rehman, M. T.; Shamsi, H.; Khan, A. U. Mol. Pharm. 2014, 11, 1785.  doi: 10.1021/mp500116c

    45. [45]

      Rahman, T.; Rahmatullah, M. Bioorg. Med. Chem. Lett. 2010, 20, 537.  doi: 10.1016/j.bmcl.2009.11.106

    46. [46]

      Dong, K.; Yang, X.; Zhao, T.; Zhu, X. Mol. Simulat. 2017, 43, 599.  doi: 10.1080/08927022.2017.1279283

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(17)
  • Abstract views(1400)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return