Citation: Zhang Dajie, Liu Jie, Chen Bo, Wang Jingxia, Jiang Lei. Research Progress of Solvent-based Smart Actuator Materials[J]. Acta Chimica Sinica, ;2018, 76(6): 425-435. doi: 10.6023/A18010035 shu

Research Progress of Solvent-based Smart Actuator Materials

  • Corresponding author: Chen Bo, dr-chenpo@vip.sina.com Wang Jingxia, jingxiawang@mail.ipc.ac.cn
  • Received Date: 23 January 2018
    Available Online: 23 June 2018

    Fund Project: the National Natural Science Foundation of China 21775040the National Natural Science Foundation of China 51373183Project supported by the Ministry of Science and Technology of China (Grant Nos. 2017YFA0204504, 2016YFA0200803, 2016YFB0402004) and the National Natural Science Foundation of China (Grant Nos. 51673207, 51373183, 21575040, 21775040 and 21775041)the Ministry of Science and Technology of China 2017YFA0204504the National Natural Science Foundation of China 51673207the Ministry of Science and Technology of China 2016YFB0402004the Ministry of Science and Technology of China 2016YFA0200803the National Natural Science Foundation of China 21775041the National Natural Science Foundation of China 21575040

Figures(11)

  • Recently, smart actuator materials have drawn widespread research attention due to their important applications in soft robots, artificial muscles, sensors, or micro hand device preparation. In nature, there are many examples of actuator materials. For example, sea cucumbers can alter the stiffness of their dermis within seconds to obtain survival advantages and the venus flytrap can close their leaves in a second for efficient prey capture. Pinecones and flowers respond to their environment by opening and closing with the relative humidity changes. Inspired by these natural creatures, synthetic polymer microactuators such as polymer hydrogels and polymer composites are widely developed due to their important applications based on their response to external stimuli, such as light, heat, electronic, magnetic, solvent and humidity. In this work, we review the research progress of solvent-based smart actuator materials. There are mainly two kinds of solvent-actuator based on the fabrication method and actuator mechanism:one is a two-layer structure membrane formed by active layers-support layers with different expansion coefficients. The active layer is volumetrically expanded under the action of a solvent, and the support layer is a passive holder. The other is made of rigid material skeleton with a flexible material to make a single-layer composite membrane filler. The ionic gradient or the pore structure gradient of the material itself gives rise to the directional driving behavior with a varying solvent binding gradient. Otherwise, the membrane's bending drive behavior has been achieved by inducing a single material to form an infiltration gradient by a solvent infiltration process. Solvent-based smart actuator materials are prepared by introducing moisture or solvent-responsive molecules in a polymeric material to form a bilayers or monolayer structure. The material is distorted by volume deformation due to humidity or solvent field action. At present, a great deal of research work has been devoted to converting the mechanical deformation of solvent-based smart actuator materials into electric energy and developing related intelligent application in energy transformation, liquid switching, biomimicry, transportation of liquids and smart sensing. The paper presents a pioneering outlook for the further development of the solvent actuator materials.
  • 加载中
    1. [1]

      Barrett, C. J.; Mamiya, J.-i.; Yager, K. G.; Ikeda, T. Soft Matter 2007, 3, 1249.  doi: 10.1039/b705619b

    2. [2]

      Yamada, M.; Kondo, M.; Miyasato, R.; Naka, Y.; Mamiya, J.-i.; Kinoshita, M.; Shishido, A.; Yu, Y.; Barrett, C. J.; Ikeda, T. J. Mater. Chem. 2009, 19, 60.  doi: 10.1039/B815289F

    3. [3]

      Wu, C.; Feng, J.; Peng, L.; Ni, Y.; Liang, H.; He, L.; Xie, Y. J. Mater. Chem. 2011, 21, 18584.  doi: 10.1039/c1jm13311j

    4. [4]

      Wang, E.; Desai, M. S.; Lee, S. W. Nano Lett. 2013, 13, 2826.  doi: 10.1021/nl401088b

    5. [5]

      Iamsaard, S.; Asshoff, S. J.; Matt, B.; Kudernac, T.; Cornelissen, J. J.; Fletcher, S. P.; Katsonis, N. Nat. Chem. 2014, 6, 229.  doi: 10.1038/nchem.1859

    6. [6]

      Deng, J.; Li, J. F.; Chen, P. N.; Fang, X.; Sun, X. M.; Jiang, Y. S.; Weng, W.; Wang, B. J.; Peng, H. S. J. Am. Chem. Soc. 2016, 138, 225.  doi: 10.1021/jacs.5b10131

    7. [7]

      Han, D. D.; Zhang, Y. L.; Ma, J. N.; Liu, Y. Q.; Han, B.; Sun, H. B. Adv. Mater. 2016, 28, 8328.  doi: 10.1002/adma.v28.38

    8. [8]

      Kumar, K.; Knie, C.; Bleger, D.; Peletier, M. A.; Friedrich, H.; Hecht, S.; Broer, D. J.; Debije, M. G.; Schenning, A. P. H. J. Nat. Commun. 2016, 7, 11975.  doi: 10.1038/ncomms11975

    9. [9]

      Ma, C. X.; Le, X. X.; Tang, X. L.; He, J.; Xiao, P.; Zheng, J.; Xiao, H.; Lu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T. Adv. Funct. Mater. 2016, 26, 8670.  doi: 10.1002/adfm.v26.47

    10. [10]

      Rogóż, M.; Zeng, H.; Xuan, C.; Wiersma, D. S.; Wasylczyk, P. Adv. Opt. Mater. 2016, 4, 1689.  doi: 10.1002/adom.201600503

    11. [11]

      Lu, X. L.; Guo, S. W.; Tong, X.; Xia, H. S.; Zhao, Y. Adv. Mater. 2017, 29, 1606467.  doi: 10.1002/adma.v29.28

    12. [12]

      Ma, H.; Hou, J.; Wang, X.; Zhang, J.; Yuan, Z.; Xiao, L.; Wei, Y.; Fan, S.; Jiang, K.; Liu, K. Nano Lett. 2017, 17, 421.  doi: 10.1021/acs.nanolett.6b04393

    13. [13]

      Osada, Y.; Okuzaki, H.; Hori, H. Nature 1992, 35, 242.
       

    14. [14]

      Ma, Y.; Zhang, Y.; Wu, B.; Sun, W.; Li, Z.; Sun, J. Angew. Chem., Int. Ed. 2011, 50, 6254.  doi: 10.1002/anie.201101054

    15. [15]

      Obata, K.; Tamesue, S.; Hashimoto, K.; Mitsumata, T.; Tsubokawa, N.; Yamauchi, T. Macromol. Mater. Eng. 2015, 300, 766.  doi: 10.1002/mame.v300.8

    16. [16]

      Taccola, S.; Greco, F.; Sinibaldi, E.; Mondini, A.; Mazzolai, B.; Mattoli, V. Adv. Mater. 2015, 27, 1668.  doi: 10.1002/adma.201404772

    17. [17]

      Chen, L. Z.; Weng, M. C.; Zhang, W.; Zhou, Z. W.; Zhou, Y.; Xia, D.; Li, J. X.; Huang, Z. G.; Liu, C. H.; Fan, S. S. Nanoscale. 2016, 8, 6877.  doi: 10.1039/C5NR07237A

    18. [18]

      Hamedi, M. M.; Campbell, V. E.; Rothemund, P.; Güder, F.; Christodouleas, D. C.; Bloch, J.-F.; Whitesides, G. M. Adv. Funct. Mater. 2016, 26, 2446.  doi: 10.1002/adfm.v26.15

    19. [19]

      Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Adv. Mater. 2016, 28, 1610.  doi: 10.1002/adma.201505243

    20. [20]

      Simaite, A.; Mesnilgrente, F.; Tondu, B.; Soueres, P.; Bergaud, C. Sensor. Actuat. B-Chem. 2016, 229, 425.  doi: 10.1016/j.snb.2016.01.142

    21. [21]

      Terasawa, N.; Asaka, K. Langmuir 2016, 32, 7210.  doi: 10.1021/acs.langmuir.6b01148

    22. [22]

      Uh, K.; Yoon, B.; Lee, C. W.; Kim, J. M. ACS Appl. Mater. Interf. 2016, 8, 1289.  doi: 10.1021/acsami.5b09981

    23. [23]

      Wang, F.; Jeon, J. H.; Kim, S. J.; Park, J. O.; Park, S. J. Mater. Chem. B 2016, 4, 5015.  doi: 10.1039/C6TB01084A

    24. [24]

      Magdanz, V.; Stoychev, G.; Ionov, L.; Sanchez, S.; Schmidt, O. G. Angew. Chem., Int. Ed. 2014, 53, 2673.  doi: 10.1002/anie.201308610

    25. [25]

      Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Adv. Funct. Mater. 2015, 25, 2980.  doi: 10.1002/adfm.201500420

    26. [26]

      Asanuma, H.; Asaka, K.; Su, J.; Poubel, L.; Shahinpoor, M. Smart Mater. Struct. 2016, 25, 025015.  doi: 10.1088/0964-1726/25/2/025015

    27. [27]

      Liu, L.; Jiang, S. H.; Sun, Y.; Agarwal, S. Adv. Funct. Mater. 2016, 26, 1021.  doi: 10.1002/adfm.v26.7

    28. [28]

      Shi, Y.; Zhu, C.; Li, J. T.; Wei, J.; Guo, J. B. New J. Chem. 2016, 40, 7311.  doi: 10.1039/C6NJ00492J

    29. [29]

      Xing, H. H.; Li, J.; Shi, Y.; Guo, J. B.; Wei, J. ACS Appl. Mater. Interf. 2016, 8, 9440.  doi: 10.1021/acsami.6b01033

    30. [30]

      Shahsavan, H.; Salili, S. M.; Jakli, A.; Zhao, B. X. Adv. Mater. 2017, 29, 1604021.  doi: 10.1002/adma.v29.3

    31. [31]

      Sotiriou, G. A.; Blattmann, C. O.; Pratsinis, S. E. Adv. Funct. Mater. 2013, 23, 34.  doi: 10.1002/adfm.201201371

    32. [32]

      He, J.; Xiao, P.; Zhang, J. W.; Liu, Z. Z.; Wang, W. Q.; Qu, L. T.; Ouyang, Q.; Wang, X. F.; Chen, Y. S.; Chen, T. Adv. Mater. Interf. 2016, 3, 1600169.  doi: 10.1002/admi.201600169

    33. [33]

      Song, H. J.; Lin, H. J.; Antonietti, M.; Yuan, J. Y. Adv. Mater. Interf. 2016, 3, 1500743.  doi: 10.1002/admi.201500743

    34. [34]

      Zhang, Y.; Ionov, L. ACS Appl. Mater. Interf. 2014, 6, 10072.  doi: 10.1021/am502492u

    35. [35]

      Wang, D. H.; McKenzie, R. N.; Buskohl, P. R.; Vaia, R. A.; Tan, L. S. Macromolecules 2016, 49, 3286.  doi: 10.1021/acs.macromol.6b00250

    36. [36]

      Lv, C.; Xia, H.; Shi, Q.; Wang, G.; Wang, Y. S.; Chen, Q. D.; Zhang, Y. L.; Liu, L. Q.; Sun, H. B. Adv. Mater. Interf. 2017, 4, 1601002.  doi: 10.1002/admi.201601002

    37. [37]

      Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Adv. Mater. 2017, 29, 1603483.  doi: 10.1002/adma.201603483

    38. [38]

      Rus, D.; Tolley, M. T. Nature 2015, 521, 467.  doi: 10.1038/nature14543

    39. [39]

      Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. Nature 2016, 536, 451.  doi: 10.1038/nature19100

    40. [40]

      Ban, J. F.; Mu, L. N.; Yang, J. H.; Chen, S. J.; Zhuo, H. T. J. Mater. Chem. A 2017, 5, 14514.  doi: 10.1039/C7TA04463A

    41. [41]

      Lv, J. A.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Nature 2016, 537, 179.  doi: 10.1038/nature19344

    42. [42]

      Wani, O. M.; Zeng, H.; Priimagi, A. Nat.Commun. 2017, 8, 15546.  doi: 10.1038/ncomms15546

    43. [43]

      Li, W. B.; Li, F. Y.; Li, H. Z.; Su, M.; Gao, M.; Li, Y. A.; Su, D.; Zhang, X. Y.; Song, Y. L. ACS Appl. Mater. Interf. 2016, 8, 12369.  doi: 10.1021/acsami.6b04235

    44. [44]

      Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Adv. Mater. 2016, 28, 231.  doi: 10.1002/adma.201504264

    45. [45]

      Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. ACS Appl. Mater. Interf. 2016, 8, 21721.  doi: 10.1021/acsami.6b07713

    46. [46]

      Zhao, Z.; Wang, H.; Shang, L.; Yu, Y.; Fu, F.; Zhao, Y.; Gu, Z. Adv. Mater. 2017, 1704569.

    47. [47]

      Elbaum, R.; Zaltzman, L.; Burgert, I.; Fratzl, P. Science 2007, 316, 884.  doi: 10.1126/science.1140097

    48. [48]

      Fratzl, P.; Barth, F. G. Nature 2009, 462, 442.  doi: 10.1038/nature08603

    49. [49]

      Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E. Science 2011, 333, 1726.  doi: 10.1126/science.1203874

    50. [50]

      Erb, R. M.; Sander, J. S.; Grisch, R.; Studart, A. R. Nat. Commun. 2013, 4, 1712.  doi: 10.1038/ncomms2666

    51. [51]

      Kuang, M.; Wang, J.; Jiang, L. Chem. Soc. Rev. 2016, 45, 6833.  doi: 10.1039/C6CS00562D

    52. [52]

      Xu, D. D. M. S. Thesis, Zhengzhou University, Zhengzhou, 2015(in Chinese).

    53. [53]

      Zhang, L. D.; Chizhik, S.; Wen, Y. Z.; Naumov, P. Adv. Funct. Mater. 2016, 26, 1040.  doi: 10.1002/adfm.v26.7

    54. [54]

      Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. Nat. Mater. 2016, 15, 1084.  doi: 10.1038/nmat4693

    55. [55]

      Wong, W. S. Y.; Li, M. F.; Nisbet, D. R.; Craig, V. S. J.; Wang, Z. K.; Tricoli, A. Sci. Adv. 2016, 2, 1600417.  doi: 10.1126/sciadv.1600417

    56. [56]

      Zhao, Q.; Heyda, J.; Dzubiella, J.; Tauber, K.; Dunlop, J. W. C.; Yuan, J. Y. Adv. Mater. 2015, 27, 2913.  doi: 10.1002/adma.v27.18

    57. [57]

      Agnarsson, I.; Dhinojwala, A.; Sahni, V.; Blackledge, T. A. J. Exp. Biol. 2009, 212, 1990.  doi: 10.1242/jeb.028282

    58. [58]

      Yang, Q. L.; Kang, X. M.; Sun, J.; Wei, L. H.; Ma, Z. Chem. Ind. Eng. Prog. 2015, 34, 3075.

    59. [59]

      Kim, C. C.; Lee, H. H.; Oh, K. H.; Sun, J. Y. Science 2016, 353, 682.  doi: 10.1126/science.aaf8810

    60. [60]

      Stoychev, G.; Guiducci, L.; Turcaud, S.; Dunlop, J. W. C.; Ionov, L. Adv. Funct. Mater. 2016, 26, 7733.  doi: 10.1002/adfm.v26.42

    61. [61]

      Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Angew. Chem., Int. Ed. 2013, 52, 10482.  doi: 10.1002/anie.201304358

    62. [62]

      Ji, M. Y.; Jiang, N.; Chang, J.; Sun, J. Q. Adv. Funct. Mater. 2014, 24, 5412.  doi: 10.1002/adfm.201401011

    63. [63]

      Han, D. D.; Zhang, Y. L.; Jiang, H. B.; Xia, H.; Feng, J.; Chen, Q. D.; Xu, H. L.; Sun, H. B. Adv. Mater. 2015, 27, 332.  doi: 10.1002/adma.v27.2

    64. [64]

      Liu, Y. Q.; Ma, J. N.; Liu, Y.; Han, D. D.; Jiang, H. B.; Mao, J. W.; Han, C. H.; Jiao, Z. Z.; Zhang, Y. L. Opt. Mater. Express 2017, 7, 2617.  doi: 10.1364/OME.7.002617

    65. [65]

      Gu, Y. Q.; Huang, X. Y.; Wiener, C. G.; Vogt, B. D.; Zacharia, N. S. ACS Appl. Mater. Interf. 2015, 7, 1848.  doi: 10.1021/am507573m

    66. [66]

      Zhang, L. D.; Naumov, P. Angew. Chem., Int. Ed. 2015, 54, 8642.  doi: 10.1002/anie.201504153

    67. [67]

      He, S. S.; Chen, P. N.; Qiu, L. B.; Wang, B. J.; Sun, X. M.; Xu, Y. F.; Peng, H. S. Angew. Chem., Int. Ed. 2015, 54, 14880.  doi: 10.1002/anie.201507108

    68. [68]

      Zhao, Q.; Dunlop, J. W. C.; Qiu, X. L.; Huang, F. H.; Zhang, Z. B.; Heyda, J.; Dzubiella, J.; Antonietti, M.; Yuan, J. Y. Nat. Commun. 2014, 5, 5293.  doi: 10.1038/ncomms6293

    69. [69]

      Kitazawa, Y.; Ueno, K.; Watanabe, M. Chem. Rec. 2017, 17, 1.  doi: 10.1002/tcr.201780101

    70. [70]

      Lin, H. J.; Gong, J.; Eder, M.; Schuetz, R.; Peng, H. S.; Dunlop, J. W. C.; Yuan, J. Y. Adv. Mater. Interf. 2017, 4, 1600768.  doi: 10.1002/admi.v4.1

    71. [71]

      Khan, M. K.; Hamad, W. Y.; MacLachlan, M. J. Adv. Mater. 2014, 26, 2323.  doi: 10.1002/adma.v26.15

    72. [72]

      Ilmain, F.; Tanaka, T.; Kokufuta, E. Nature 1991, 349, 400.  doi: 10.1038/349400a0

    73. [73]

      Ma, M. M.; Guo, L.; Anderson, D. G.; Langer, R. Science 2013, 339, 186.  doi: 10.1126/science.1230262

    74. [74]

      Zhang, L.; Liang, H.; Jacob, J.; Naumov, P. Nat. Commun. 2015, 6, 7429.  doi: 10.1038/ncomms8429

    75. [75]

      Zhao, Q.; Yang, X.; Ma, C.; Chen, D.; Bai, H.; Li, T.; Yang, W.; Xie, T. Mater. Horiz. 2016, 3, 422.  doi: 10.1039/C6MH00167J

    76. [76]

      Hu, X. B.; Zhou, J.; Vatankhah-Varnosfaderani, M.; Daniel, W. F. M.; Li, Q. X.; Zhushma, A. P.; Dobrynin, A. V.; Sheiko, S. S. Nat. Commun. 2016, 7, 12919.  doi: 10.1038/ncomms12919

    77. [77]

      Liu, Y. Y.; Xu, B.; Sun, S. T.; Wei, J.; Wu, L. M.; Yu, Y. L. Adv. Mater. 2017, 29, 1604792.  doi: 10.1002/adma.201604792

    78. [78]

      Kobatake, S.; Takami, S.; Muto, H.; Ishikawa, T.; Irie, M. Nature 2007, 446, 778.  doi: 10.1038/nature05669

    79. [79]

      Iamsaard, S.; Anger, E.; Asshoff, S. J.; Depauw, A.; Fletcher, S. P.; Katsonis, N. Angew. Chem., Int. Ed. 2016, 55, 9908.  doi: 10.1002/anie.201603579

    80. [80]

      Wang, H. S.; Cho, J.; Song, D. S.; Jang, J. H.; Jho, J. Y.; Park, J. H. ACS Appl. Mater. Interf. 2017, 9, 21998.  doi: 10.1021/acsami.7b04779

    81. [81]

      Song, S. H.; Lee, J. Y.; Rodrigue, H.; Choi, I. S.; Kang, Y. J.; Ahn, S. H. Sci. Rep. 2016, 6, 21118.  doi: 10.1038/srep21118

    82. [82]

      Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Angew. Chem., Int. Ed. 2013, 52, 10330.  doi: 10.1002/anie.201303475

    83. [83]

      Lee, W. E.; Jin, Y. J.; Park, L. S.; Kwak, G. Adv. Mater. 2012, 24, 5604.  doi: 10.1002/adma.201201967

    84. [84]

      Chen, M. L.; Frueh, J.; Wang, D. L.; Lin, X. K.; Xie, H.; He, Q. Sci. Rep. 2017, 7, 769.  doi: 10.1038/s41598-017-00870-w

    85. [85]

      Lee, S.-W.; Prosser, J. H.; Purohit, P. K.; Lee, D. ACS Macro Lett. 2013, 2, 960.  doi: 10.1021/mz400439a

    86. [86]

      Zhang, F. L.; Fan, J. B.; Zhang, P. C.; Liu, M. J.; Meng, J. X.; Jiang, L.; Wang, S. Npg Asia Mater. 2017, 9, e380.  doi: 10.1038/am.2017.61

    87. [87]

      Chen, M.; Hagedorn, K.; Colfen, H.; Polarz, S. Adv. Mater. 2017, 29, 1603356.  doi: 10.1002/adma.v29.2

    88. [88]

      Liu, J.-c.; Shang, Y.-y.; Zhang, D.-j.; Xie, Z.; Hu, R.-x.; Wang, J.-x. Chin. J. Polym. Sci. 2017, 35, 1043.  doi: 10.1007/s10118-017-1981-y

    89. [89]

      Wu, H.; Kuang, M.; Cui, L.; Tian, D.; Wang, M.; Luan, G.; Wang, J.; Jiang, L. Chem. Commun. 2016, 52, 5924.  doi: 10.1039/C6CC01442A

    90. [90]

      Boudot, M.; Elettro, H.; Grosso, D. ACS Nano 2016, 10, 10031.  doi: 10.1021/acsnano.6b04648

    91. [91]

      Chen, X.; Mahadevan, L.; Driks, A.; Sahin, O. Nat. Nanotechnol. 2014, 9, 137.  doi: 10.1038/nnano.2013.290

    92. [92]

      Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Energ. Environ. Sci. 2016, 9, 912.  doi: 10.1039/C5EE03701H

    93. [93]

      Chen, X.; Goodnight, D.; Gao, Z. H.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Nat. Commun. 2015, 6, 7346.  doi: 10.1038/ncomms8346

    94. [94]

      Li, B.; Du, T.; Yu, B.; van der Gucht, J.; Zhou, F. Small 2015, 11, 3494.  doi: 10.1002/smll.v11.28

    95. [95]

      Qin, M.; Huang, Y.; Li, Y. N.; Su, M.; Chen, B. D.; Sun, H.; Yong, P. Y.; Ye, C. Q.; Li, F. Y.; Song, Y. L. Angew. Chem., Int. Ed. 2016, 55, 6911.  doi: 10.1002/anie.201602582

    96. [96]

      Lu, X.; Zhang, Z. T.; Li, H. P.; Sun, X. M.; Peng, H. S. J. Mater. Chem. A 2014, 2, 17272.  doi: 10.1039/C4TA03983A

    97. [97]

      Zhang, L. D.; Naumov, P.; Du, X. M.; Hu, Z. G.; Wang, J. Adv. Mater. 2017, 29, 1702231.  doi: 10.1002/adma.v29.37

    98. [98]

      Wu, Z. L.; Moshe, M.; Greener, J.; Therien-Aubin, H.; Nie, Z.; Sharon, E.; Kumacheva, E. Nat. Commun. 2013, 4, 1586.  doi: 10.1038/ncomms2549

    99. [99]

      Mao, Y. F.; Zheng, Y.; Li, C.; Guo, L.; Pan, Y. N.; Zhu, R.; Xu, J.; Zhang, W. H.; Wu, W. G. Adv. Mater. 2017, 29, 1606482.  doi: 10.1002/adma.v29.19

    100. [100]

      Jeong, J.; Cho, Y.; Lee, S. Y.; Gong, X. T.; Kamien, R. D.; Yang, S.; Yodh, A. G. Soft Matter 2017, 13, 956.  doi: 10.1039/C6SM02299E

    101. [101]

      Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Adv. Mater. 2014, 26, 2909.  doi: 10.1002/adma.v26.18

    102. [102]

      de Haan, L. T.; Verjans, J. M. N.; Broer, D. J.; Bastiaansen, C. W. M.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2014, 136, 10585.  doi: 10.1021/ja505475x

    103. [103]

      Zhou, Z.; Li, Q.; Chen, L.; Liu, C.; Fan, S. Acta Chim. Sinica 2016, 74, 738.
       

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    13. [13]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    14. [14]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    15. [15]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    16. [16]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    17. [17]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(156)
  • Abstract views(5906)
  • HTML views(1414)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return