Citation: Zhang Qian, Liu Qingqing, Zhang Qianqian, Fan Xia, Zhai Jin. Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification[J]. Acta Chimica Sinica, ;2018, 76(5): 400-407. doi: 10.6023/A18010030 shu

Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification

  • Corresponding author: Zhai Jin, zhaijin@buaa.edu.cn
  • Received Date: 21 January 2018
    Available Online: 23 May 2018

    Fund Project: the National Key Research and Development Program of China 2017YFA0206900the National Natural Science Foundation of China 21641006Project supported by the National Key Research and Development Program of China (Nos. 2017YFA0206902, 2017YFA0206900) and the National Natural Science Foundation of China (No. 21641006)the National Key Research and Development Program of China 2017YFA0206902

Figures(10)

  • Ion channels in cell membranes play crucial roles in many biological activities. Many artificial nanochannels have been constructed to mimic the organism functions and sensitive to external stimuli. The artificial nanochannels have drawn enormous research attention due to their potential applications and simplicity. In this work, the hourglass shaped alumina nanochannels were fabricated using a double-sided anodization method with an in situ pore opening process. We constructed organic-inorganic heterogeneous nanochannels based on anodic alumina oxide (AAO) and transparent tape by the method of heat treatment. The surface morphology and component of nanoporous heterogeneous membrane were characterized by scanning electron microscope (SEM) and ATR-FTIR spectrum. These two kinds of nanochannels have differential diameters and amphoteric characteristics. Heterogeneous nanochannels are composed of organic nanochannels and AAO pores containing carboxyl and hydroxyl groups, respectively. Ion transport through the heterogeneous nanochannels can be modulated, because of the protonation state of the nanochannels under different pH conditions. Because of the heterogeneity of structure and charge, heterojunction is formed in the junction of anodic alumina oxide nanochannels and organic nanochannels. Such an abrupt junction yields a more efficient control of ion accumulation and depletion in the heterogeneous nanochannel. The ionic transport properties of heterogeneous nanochannels can be studied by measuring the current-voltage (I-V) curves. The heterogeneous nanochannels exhibit pH sensitivity. Changing the pH value from acidic to alkaline values, a significant decrease in positive charges and the deprotonated carboxyl group with negative charges can be observed. Due to the synergistic effect of the nanoporous AAO and organic nanochannels, heterogeneous nanochannels exhibit high and controllable rectification with single rectification direction over a wide pH range. The diode-like behavior is quantified by measuring the current rectification ratios. The novel strategy introduced here is a low-cost, scalable, and robust alternative for the fabrication of heterogeneous nanochannels system for nanofluidic applications. This porous heterogeneous membrane have potential applications in the fields of ion transport, separation of biomolecules and energy conversion system.
  • 加载中
    1. [1]

      Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.  doi: 10.1126/science.1113666

    2. [2]

      Beckstein, O.; Biggin, P. C.; Bond, P.; Bright, J. N.; Domene, C.; Grottesi, A.; Holyoake, J.; Sansom, M. S. P. FEBS Lett. 2003, 555, 85.  doi: 10.1016/S0014-5793(03)01151-7

    3. [3]

      Jiang, Y. X.; Lee, A.; Chen, J. Y.; Cadene, M.; Chait, B. T.; MacKinnon, R. Nature 2002, 417, 515.  doi: 10.1038/417515a

    4. [4]

      Hou, X.; Jiang, L. ACS Nano 2009, 3, 3339.  doi: 10.1021/nn901402b

    5. [5]

      de la Escosura-Muniz, A.; Merkoci, A. ACS Nano 2012, 6, 7556.  doi: 10.1021/nn301368z

    6. [6]

      Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.  doi: 10.1007/BF01870364

    7. [7]

      Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.  doi: 10.1038/nrm2330

    8. [8]

      Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.  doi: 10.1021/acsnano.5b08079

    9. [9]

      Han, K. Y.; Heng, L. P.; Wen, L. P.; Jiang, L. Nanoscale 2016, 8, 12318.  doi: 10.1039/C6NR02506D

    10. [10]

      Zhang, W. J.; Meng, Z. Y.; Zhai, J.; Heng, L. P. Chem. Commun. 2014, 50, 3552.  doi: 10.1039/c3cc47999d

    11. [11]

      Chen, Y.; Zhou, D.; Meng, Z. Y.; Zhai, J. Chem. Commun. 2016, 52, 10020.
       

    12. [12]

      Xu, Y. L.; Meng, Z. Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 538.
       

    13. [13]

      Zhou, D.; Meng, Z. Y.; Zhang, M. H.; Zhai, J. Acta Chim. Sinica 2015, 73, 716.
       

    14. [14]

      Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.  doi: 10.1021/ja503692z

    15. [15]

      Zeng, L.; Yang, Z.; Zhang, H. C.; Hou, X.; Tian, Y.; Yang, F.; Zhou, J. J.; Li, L.; Jiang, L. Small 2014, 10, 793.  doi: 10.1002/smll.201301647

    16. [16]

      Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262.
       

    17. [17]

      Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.  doi: 10.1021/am402004k

    18. [18]

      Meng, Z. Y.; Chen, Y.; Li, X. L.; Xu, Y. L.; Zhai, J. ACS Appl. Mater. Interfaces 2015, 7, 7709.  doi: 10.1021/acsami.5b00647

    19. [19]

      Li, X. L.; Wang, Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 597.  doi: 10.3969/j.issn.0253-2409.2016.05.012
       

    20. [20]

      Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H. Adv. Funct. Mater. 2013, 23, 3836.  doi: 10.1002/adfm.v23.31

    21. [21]

      Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.  doi: 10.1021/am402004k

    22. [22]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.
       

    23. [23]

      Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Adv. Mater. 2014, 26, 2329.  doi: 10.1002/adma.v26.15

    24. [24]

      Li, P.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Angew. Chem., Int. Ed. 2016, 55, 15637.  doi: 10.1002/anie.201609161

    25. [25]

      Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger, W. Adv. Funct. Mater. 2012, 22, 390.  doi: 10.1002/adfm.201102146

    26. [26]

      Zhang, H. C.; Hou, X.; Hou, J.; Zeng, L.; Tian, Y.; Li, L.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1102.  doi: 10.1002/adfm.v25.7

    27. [27]

      Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S. J. Am. Chem. Soc. 2014, 136, 9902.  doi: 10.1021/ja505302q

    28. [28]

      Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.  doi: 10.1002/adma.v22:22

    29. [29]

      Chun, K. Y.; Choi, W.; Roh, S. C.; Han, C. S. Nanoscale 2015, 7, 12427.  doi: 10.1039/C5NR02743H

    30. [30]

      Wang, R.; Sun, Y.; Zhang, F.; Song, M. M.; Tian, D. M.; Li, H. B. Angew. Chem., Int. Ed. 2017, 56, 5294.  doi: 10.1002/anie.201702175

    31. [31]

      Kameta, N.; Matsuzawa, T.; Yaoi, K.; Masuda, M. RSC Adv. 2016, 6, 36744.  doi: 10.1039/C6RA06793J

    32. [32]

      Meng, Z. Y.; Jiang, C. D.; Li, X. L.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.  doi: 10.1021/am5002822

    33. [33]

      Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L. P.; Wang, L.; Cao, L. X.; Yang, Y.; Xue, J. M.; Song, Y. L.; Wang, Y. G.; Liu, D. S.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.  doi: 10.1021/ja901574c

    34. [34]

      Han, C. P.; Su, H. Y.; Sun, Z. Y.; Wen, L.; Tian, D. M.; Xu, K.; Hu, J. F.; Wang, A. M.; Li, H. B.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.  doi: 10.1002/chem.v19.28

    35. [35]

      Guan, W. J.; Reed, M. A. Nano Lett. 2012, 12, 6441.  doi: 10.1021/nl303820a

    36. [36]

      Kim, J.; Kim, H. Y.; Lee, H.; Kim, S. J. Langmuir 2016, 32, 6478.  doi: 10.1021/acs.langmuir.6b01178

    37. [37]

      Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Adv. Funct. Mater. 2015, 25, 2091.  doi: 10.1002/adfm.v25.14

    38. [38]

      Zhang, J. C.; Yang, Y.; Zhang, Z. C.; Wang, P. P.; Wang, X. Adv. Mater. 2014, 26, 1071.  doi: 10.1002/adma.201304270

    39. [39]

      Cheng, L. J.; Guo, L. J. ACS Nano 2009, 3, 575.  doi: 10.1021/nn8007542

    40. [40]

      Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2015, 137, 14765.  doi: 10.1021/jacs.5b09918

    41. [41]

      Cheng, H. F.; Zhou, Y.; Feng, Y. P.; Geng, W. X.; Liu, Q. F.; Guo, W.; Jiang, L. Adv. Mater. 2017, 29, 1700177.  doi: 10.1002/adma.201700177

    42. [42]

      Sui, X.; Zhang, Z.; Zhang, Z. Y.; Wang, Z. W.; Li, C.; Yuan, H.; Gao, L. C.; Wen, L. P.; Fan, X.; Yang, L. J.; Zhang, X. R.; Jiang, L. Angew. Chem. Int. Ed. 2016, 55, 13056.  doi: 10.1002/anie.201606469

    43. [43]

      Chen, W.; Jin, B.; Hu, Y. L.; Lu, Y.; Xia, X. H. Small 2012, 8, 1001.  doi: 10.1002/smll.201102117

    44. [44]

      Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.  doi: 10.1021/acsnano.5b08079

    45. [45]

      Hernandez-Guerrero, M.; Stenzel, M. H. Polym. Chem. 2012, 3, 563.  doi: 10.1039/C1PY00219H

    46. [46]

      Choi, E.; Wang, C.; Chang, G. T.; Park, J. Nano Lett. 2016, 16, 2189.  doi: 10.1021/acs.nanolett.5b04246

    47. [47]

      Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.  doi: 10.1002/(ISSN)1616-3028

    48. [48]

      Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2017, 139, 8905.  doi: 10.1021/jacs.7b02794

    49. [49]

      Gao, P. C.; Hu, L. T.; Liu, N. N.; Yang, Z. K.; Lou, X. D.; Zhai, T. Y.; Li, H. Q.; Xia, F. Adv. Mater. 2016, 28, 460.  doi: 10.1002/adma.v28.3

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(23)
  • Abstract views(1679)
  • HTML views(483)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return