Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening
- Corresponding author: Li Song, songli@hust.edu.cn
Citation:
Bian Lei, Li Wei, Wei Zhenzhen, Liu Xiaowei, Li Song. Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening[J]. Acta Chimica Sinica,
;2018, 76(4): 303-310.
doi:
10.6023/A18010026
Zhou, K. W.; Zhou, Y.; Sun, Y.; Tian, X. J. Acta Chim. Sinica 2008, 66, 943.
doi: 10.3321/j.issn:0567-7351.2008.08.018
Chen, Y.; Qi, F. M.; Yang, C.; Ye, W. C.; Wang, C. M. Acta Chim. Sinica 2009, 67, 671.
doi: 10.3321/j.issn:0567-7351.2009.07.015
Liu, Y. H.; Yu, Q.; Li, C.; Lin, X.; Zhang, X. Q.; Yu, L.; Wu, L. F. Guangdong Chem. Ind. 2011, 38, 128.
Ruhl, M. J. Chem. Eng. Prog. 1993, 89, 37.
Wang, Z.; Wang, W. Z.; Jiang, D.; Zhang, L.; Zheng, Y. Dalton Trans. 2016, 45, 11306.
doi: 10.1039/C6DT01696K
Zhong, C. L. Structure-Property Relationship and Design of Metal-Organic Frameworks, Science Press, Beijing, 2013.
Farha, O. K.; Hupp, J. T.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Gomez-Gualdron, D. A.; Borah, B. J. Am. Chem. Soc. 2014, 36, 15016.
Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Sci. China-Chem. 2016, 34, 157.
doi: 10.1002/cjoc.v34.2
Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 40, 1477.
Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.
doi: 10.3969/j.issn.0253-2409.2016.01.016
Li, L.; Cao, X. Y.; Huang, R. D. Chin. J. Chem. 2015, 34, 143.
Li, X. X.; Shu, L.; Chen, S. Acta Chim. Sinica 2016, 74, 969.
doi: 10.3866/PKU.WHXB201601061
Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.
doi: 10.1038/378703a0
Furukawa, H.; Müller, U.; Yaghi, O. M. Angew. Chem. 2015, 54, 3417.
doi: 10.1002/anie.201410252
Gu, Z. Y.; Wang, G.; Yan, X. P. Anal. Chem. 2010, 82, 1365.
doi: 10.1021/ac902450f
Li, C. M.; Huang, J. P.; Zhu, H. L.; Liu, L. L.; Feng, Y. M.; Hu, G.; Yu, X. B. Sensor. Actuat. B-Chem. 2017, 253, 275.
doi: 10.1016/j.snb.2017.06.064
Zhou, W.; Wu, Y. P.; Zhao, J.; Dong, W. W.; Qiao, X. Q.; Hou, D. F.; Bu, X. H.; Li, D. S. Inorg. Chem. 2017, 56, 14111.
doi: 10.1021/acs.inorgchem.7b02254
Zhao, Z. Y.; Hao, J. Y.; Song, X. D.; Ren, S. Z.; Hao, C. RSC Adv. 2015, 5, 49752.
doi: 10.1039/C5RA07373A
Yu, Y.; Zhang, X. M.; Ma, J. P.; Liu, Q. K.; Wang, P.; Dong, Y. B. Chem. Commun. 2014, 50, 1444.
doi: 10.1039/C3CC47723A
Moradpour, T.; Abbasi, A.; Hecke, K. V. J. Solid State Chem. 2015, 228, 36.
doi: 10.1016/j.jssc.2015.04.013
Bellat, J. P.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J. M.; Lamonier, J. F. J. Hazard. Mater. 2015, 300, 711.
doi: 10.1016/j.jhazmat.2015.07.078
Li, J. Y.; Min, J. Mater. Rev. 2009, 23, 460.
doi: 10.3321/j.issn:1005-023X.2009.z2.136
Yao, Y. H.; Song, X. D.; Qiu, J. S.; Hao, C. J. Phys. Chem. A 2014, 118, 6191.
doi: 10.1021/jp503722m
Wilmer, C. E.; Leaf, M.; Chang, Y. L.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
doi: 10.1038/nchem.1192
Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.
doi: 10.1021/la301915s
Sun, W. Z.; Lin, L. C.; Peng, X.; Smit, B. AIChE J. 2014, 60, 2314.
doi: 10.1002/aic.14467
Colón, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.
doi: 10.1021/jp4122326
Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.
doi: 10.1021/cm401978e
Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Chem. Rev. 2012, 112, 703.
doi: 10.1021/cr200217c
Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.
doi: 10.1039/c2sc01097f
Heest, T. V.; Teichmcgoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.
Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J. H.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.
doi: 10.1038/nmat3336
Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2010, 132, 7528.
doi: 10.1021/ja1023699
First, E. L.; Gounaris, C. E.; Floudas, C. A. Langmuir 2013, 29, 5599.
doi: 10.1021/la400547a
Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.
doi: 10.1021/acs.jpcc.7b07758
Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.
doi: 10.1002/slct.201701934
Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.
doi: 10.1021/acs.langmuir.6b02803
Mcdaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.
doi: 10.1021/jp511674w
Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
doi: 10.1021/acs.jpclett.7b02700
Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.
doi: 10.1021/cm502594j
Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Nat. Commun. 2016, 7, 11831.
doi: 10.1038/ncomms11831
Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2017, 29, 1.
doi: 10.1021/acs.chemmater.6b05235
Liu, X.; Wang, J. Y.; Li, Q. Y.; Jiang, S.; Zhang, T. H.; Ji, S. F. J. Rare-Earths 2014, 32, 189.
doi: 10.1016/S1002-0721(14)60050-8
Katsoulidis, A. P.; Park, K. S.; Antypov, D.; Martígastaldo, C.; Miller, G. J.; Warren, J. E.; Robertson, C. M.; Blanc, F.; Darling, G. R.; Berry, N. G.; Purton, J. A.; Adams, D. J. Angew. Chem. Int. Ed. 2014, 126, 197.
doi: 10.1002/ange.v126.1
Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Micropor. Mesopor. Mater. 2002, 55, 217.
doi: 10.1016/S1387-1811(02)00405-5
Xia, Q. B.; Miao, J. P.; Sun, X. J.; Zhou, X.; Li, Z.; Xi, H. X. J. South China Univ. Tech. Nat. Sci. Ed. 2013, 12, 24.
Huo, S. H. Ph. D. Dissertation, Nankai University, Tianjin, 2012.
Ke, F. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014.
Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6, 47771.
doi: 10.1039/C6RA04656H
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Micropor. Mesopor. Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020
Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040
Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
doi: 10.1002/(ISSN)1547-5905
Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
doi: 10.1063/1.470117
Hantal, G.; Jedlovszky, P.; Hoang, P. N. M.; Picaud, S. J. Phys. Chem. C 2007, 111, 14170.
doi: 10.1021/jp0742564
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simulat. 2015, 42, 81.
Wu, L.; Xue, M.; Huang, L.; Qiu, S. L. Sci. China-Chem. 2011, 54, 1441.
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
(a) The correlation between formaldehyde working capacity and the largest cavity diameter (LCD) of MOFs, colored by the heat of adsorption; (b) The relationship between LCD and selectivity, colored by the heat of adsorption. The working capacity and selectivity were calculated at the total pressure of 1 bar and 25 ℃
(1) Nitrogen gas cylinder; (2) Gas flowmeter; (3) Quartz beads and 1, 3, 5-Trioxane; (4) U-tube; (5) Oil bath; (6) Valve; (7) Fan; (8) Sealed box; (9) Lifter; (10) Adsorbent; (11) Lifter controller; (12) Exhaust gas absorption device