Citation: Gu Zhengyang, Ji Shunjun. Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions[J]. Acta Chimica Sinica, ;2018, 76(5): 347-356. doi: 10.6023/A18010023 shu

Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions

  • Corresponding author: Ji Shunjun, shunjun@suda.edu.cn
  • Received Date: 16 January 2018
    Available Online: 30 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772137, 21672157, 21372174), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Soochow University for financial support, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materialsthe National Natural Science Foundation of China 21372174the National Natural Science Foundation of China 21772137Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe National Natural Science Foundation of China 21672157the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions 16KJA150002

Figures(18)

  • Isocyanide is an important reactive reactant containing stable divalent carbon atoms, which has been widely used in the construction of nitrogen compounds, new drugs and natural products. During the past decades, exhaustive efforts have been devoted to the discovery of highly efficient reactions involving isocyanide on the basis of the development of the Passerini and Ugi reactions. Several types of reactions involving isocyanides have been reported, such as nucleophilic attack, electrophilic addition, imidoylation reactions, and oxidation, etc. Recently, isocyanides have found a new application as versatile C1 building blocks in transition metal catalysis. The transition metal catalyzed reactions involving isocyanide insertion offer a vast potential to construct C—C or C-N bonds for the synthesis of nitrogen-containing fine chemicals. As we know, the catalysts used in isocyanide insertion reactions are mainly concentrated in some valuable transition metals compounds, such as Pd, Rh, Ag and other metals. Therefore, the development of catalysts based on the naturally more abundant, cost efficient transition metal complexes, represents an attractive alternative. In this context, rather environmentally benign cobalt complexes bear great potential for applications in the coupling reactions. The reduced electronegativity of cobalt as compared to the homologous group 9 elements translates into more nucleophilic organometallic cobalt intermediates which allow for unprecedented reaction pathways in transition-metal catalyzed C—H activations as well as significantly improved positional and chemo-selectivities. And in the recent years, notable success has been achieved with the development of cobalt catalyzed C—H functionalizations with either in situ generated or single-component cobalt-complexes under mild reaction conditions. How to find and use the cost efficient cobalt-complexes to catalyze the isocyanide coupling reaction is of great significance. Our group has been devoted to explore the isocyanide chemistry, and in recent years, we have achieved several progresses in the reaction of cobalt-catalyzed isocyanides. In this review we summarize the recent advances in the cobalt-catalyzed isocyanide coupling reactions.
  • 加载中
    1. [1]

      Lieke, W. Ann. Chem. Pharm. 1859, 112, 316.  doi: 10.1002/(ISSN)1099-0690

    2. [2]

      Scheuer, P. J. Acc. Chem. Res. 1992, 25, 433.  doi: 10.1021/ar00022a001

    3. [3]

      Passerini, M. Gazz. Chim. Ital. 1921, 51, 126.
       

    4. [4]

      Ugi, I.; Mey, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem. 1959, 71, 386.
       

    5. [5]

      Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.
       

    6. [6]

      Recent development of the Passerini and Ugi reactions, see selected reviews: (a) Dö mling, A. ; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (b) Zhu, J. Eur. J. Org. Chem. 2003, 1133; (c) Dö mling, A. Chem. Rev. 2006, 106, 17; (d) Ruijter, E. ; Scheffelaar, R. ; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234. (e) Sadjadi, S. ; Heravi, M. M. Tetrahedron 2011, 67, 2707; (f) Dö mling, A. ; Wang, W. ; Wang, K. Chem. Rev. 2012, 112, 3083.

    7. [7]

      (a) Liao, J. -Y. ; Shao, P. -L. ; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 628. (b) Kobiki, Y. ; Kawaguchi, S. ; Ogawa, A. Org. Lett. 2015, 17, 3490. (c) Zhang, Z. ; Li, Z. -Y. ; Fu, B. ; Zhang, Z. -H. Chem. Commun. 2015, 51, 16312. (d) Zhang, Z. ; Huang, B. -L. ; Qiao, G. -Y. ; Zhu, L. ; Xiao, F. ; Chen, F. ; Fu, B. ; Zhang, Z. -H. Angew. Chem. Int. Ed. 2017, 56, 1.

    8. [8]

      (a) Saluste, C. G. ; Whitby, R. J. ; Furber, M. Angew. Chem. Int. Ed. 2000, 39, 4156; (b) Saluste, C. G. ; Whitby, R. J. ; Furber, M. Tetrahedron Lett. 2001, 42, 6191; (c) Tetala, K. K. R. ; Whitby, R. J. ; Light, M. E. ; Hurtshouse, M. B. Tetrahedron Lett. 2004, 45, 6991; (d) Saluste, C. G. ; Crumpler, S. ; Furber, M. ; Whitby, R. J. Tetrahedron Lett. 2004, 45, 6995. (e) Whitby, R. J. ; Saluste, C. G. ; Furber, M. Org. Biomol. Chem. 2004, 2, 1974.

    9. [9]

      (a) Baelen, G. V. ; Kuijer, S. ; Rýček, L. ; Sergeyev, S. ; Janssen, E. ; de Kanter, F. J. J. ; Maes, B. U. W. ; Ruijter, E. ; Orru, R. V. A. Chem. Eur. J. 2011, 17, 15039; (b) Estévez, V. ; Baelen, G. V. ; Lentferink, B. H. ; Vlaar, T. ; Janssen, E. ; Maes, B. U. W. ; Orru, R. V. A. ; Ruijter, E. ACS Catal. 2014, 4, 40; (c) Vlaar, T. ; Ruijter, E. ; Znabet, A. ; Janssen, E. ; de Kanter, F. J. J. ; Maes, B. U. W. ; Orru, R. V. A. Org. Lett. 2011, 13, 6496.

    10. [10]

      (a) Jaing, H. -F. ; Liu, B. -F. ; Li, Y. -B. ; Wang, A. -Z. ; Huang, H. -W. Org. Lett. 2011, 13, 1028; (b) Li, Y. -B. ; Zhao, J. ; Chen, H. -J. ; Liu, B. ; Jiang, H. -F. Chem. Commun. 2012, 48, 3545; (c) Liu, B. -F. ; Li, Y. -B. ; Yin, M. -Z. ; Wu, W. -Q. ; Jiang, H. -F. Chem. Commun. 2012, 48, 11446; (d) Jaing, H. -F. ; Yin, M. -Z. ; Li, Y. -B. ; Liu, B. -F. ; Zhao, J. -S. -W. ; Wu, W. -Q. Chem. Commun. 2014, 50, 2037; (e) Liu, B. -F. ; Li, Y. -B. ; Jaing, H. -F. ; Yin, M. -Z. ; Huang, H. -W. Adv. Synth. Catal. 2012, 354, 2288. (f) Li, Z. ; Zheng, J. ; Hu, W. -G. ; Li, J. -X. ; Wu, W. -Q. ; Jaing, H. -F. Org. Chem. Front. 2017, 4, 1363.

    11. [11]

      (a) Qiu, G. ; Liu, G. ; Pu, S. -Z. ; Wu, J. Chem. Commun. 2012, 48, 2903; (b) Qiu, G. ; He, Y. -H. ; Wu, J. Chem. Commun. 2012, 48, 3836; (c) Qiu, G. ; Liu, Y. ; Wu, J. Org. Biomol. Chem. 2013, 11, 798.

    12. [12]

      (a) Wang, J. ; Luo, S. ; Huang, J. -B. ; Mao, T. -T. ; Zhu, Q. Chem. Eur. J. 2014, 20, 11220; (b) Li, J. ; He, Y. -M. ; Luo, S. ; Lei, J. ; Wang, J. ; Xie, Z. -Q. ; Zhu, Q. J. Org. Chem. 2015, 80, 2223.

    13. [13]

      (a) Huang, X. -S. ; Cong, X. -F. ; Mi, P. -B. ; Bi, X. -H. Chem. Commun. 2017, 53, 3858. (b) Fang, G. -C. ; Liu, J. -Q. ; Fu, J. -K. ; Liu, Q. ; Bi, X. -H. Org. Lett. 2017, 19, 1346. (c) Wang, Y. -M. ; KiranKumar, R. ; Bi, X. -H. Tetrahedron Lett. 2016, 57, 5730. (d) Xiao, P. ; Yuan, H. -Y. ; Liu, J. -Q. ; Zheng, Y. -Y. ; Bi, X. -H. ; Zhang, J. -P. ACS Catal. 2015, 5, 6177.

    14. [14]

    15. [15]

      (a) Vllar, T. ; Ruijter, E. ; Maes, B. U. W. ; Orru, R. V. A. Angew. Chem. Int. Ed. 2013, 52, 7084; (b) Qiu, G. ; Ding, Q. -P. ; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.

    16. [16]

      Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.  doi: 10.1021/ja01854a006

    17. [17]

      Hebrard, F.; Kalck, P. Chem. Rev. 2009, 109, 4272.  doi: 10.1021/cr8002533

    18. [18]

      (a) Khand, I. U. ; Knox, G. R. ; Pauson, P. L. ; Watts, W. E. J. Chem. Soc. D 1971, 36a. (b) Khand, I. U. ; Knox, G. R. ; Pauson, P. L. ; Watts, W. E. J. Chem. Soc., Perkin Trans. 1 1973, 975.

    19. [19]

      Sugano, K.; Tanase, T.; Kobayashi, K.; Yamamoto, Y. Chem. Lett. 1991, 921.
       

    20. [20]

      Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem. Eur. J. 2013, 19, 5850.  doi: 10.1002/chem.201300239

    21. [21]

      Zhu, T.-H.; Xu, X.-P.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. 2014, 356, 509.  doi: 10.1002/adsc.201300745

    22. [22]

      Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Adv. Synth. Catal. 2015, 357, 823.  doi: 10.1002/adsc.v357.4

    23. [23]

      Zhu, T.-H.; Wang, S.-Y.; Tao, Y.-Q.; Wei, T.-Q.; Ji, S.-J. Org. Lett. 2014, 16, 1260.  doi: 10.1021/ol500286x

    24. [24]

      Xu, P.; Zhu, T.-H.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. RSC Adv. 2016, 6, 32467.  doi: 10.1039/C6RA03216H

    25. [25]

      Ahmadi, F.; Bazgir, A. RSC Adv. 2016, 6, 61955.  doi: 10.1039/C6RA06828F

    26. [26]

      Gao, Q.; Zhou, P.; Liu, F.; Hao, W.-J.; Yao, C.; Jiang, B.; Tu, S.-J. Chem. Commun. 2015, 51, 9519.  doi: 10.1039/C5CC02754C

    27. [27]

      Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 2223.  doi: 10.1021/acs.joc.6b02797

    28. [28]

      Zou, F.-H.; Chen, X.-W.; Hao, W.-Y. Tetrahedron 2017, 73, 758.  doi: 10.1016/j.tet.2016.12.057

    29. [29]

      Kalsi, D.; Barsu, N.; Sundararaju, B. Chem. Eur. J. 2018, 24, 1.  doi: 10.1002/chem.201705257

    30. [30]

      (a) Cui, X. ; Xu, X. ; Jin, L. -M. ; Wojtas, L. ; Zhang, X. P. Chem. Sci. 2015, 6, 1219. (b) Zhu, S. -F. ; Xu, X. ; Perman, J. A. ; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796. (c) Xu, X. ; Lu, H. -J. ; Ruppel, J. V. ; Cui, X. ; de Mesa, S. L. ; Wojtas, L. ; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.

    31. [31]

      (a) Goswami, M. ; Lyaskovskyy, V. ; Domingos, S. R. ; Buma, W. J. ; Woutersen, S. ; Troeppner, O. ; Ivanović-Burmazović, I. ; Lu, H. -J. ; Cui, X. ; Zhang, X. P. ; Reijerse, E. J. ; DeBeer, S. ; van Schooneveld, M. M. ; Pfaff, F. F. ; Ray, K. ; de Bruin, B. J. Am. Chem. Soc. 2015, 137, 5468. (b) Paul, N. D. ; Mandal, S. ; Otte, M. ; Cui, X. ; Zhang, X. P. ; de Bruin, B. J. Am. Chem. Soc. 2014, 136, 1090.

    32. [32]

      Gu, Z.-Y.; Liu, Y.; Wang, F.; Bao, X.-G.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2017, 7, 3893.  doi: 10.1021/acscatal.7b00798

    33. [33]

      Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 7913.  doi: 10.1021/acs.joc.7b01127

    34. [34]

      Gu, Z.-Y.; Li, J.-H.; Wang, S.-Y.; Ji, S.-J. Chem. Commun. 2017, 53, 11173.  doi: 10.1039/C7CC06531K

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

Metrics
  • PDF Downloads(51)
  • Abstract views(1530)
  • HTML views(334)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return