Citation: Wang Yinghui, Jie Jialong, Zhao Hongmei, Bai Yu, Qin Peixuan, Song Di. Deprotonation of Guanine Radical Cation in G-Quadruplex: A Combined Experimental and Theoretical Study[J]. Acta Chimica Sinica, ;2018, 76(6): 475-482. doi: 10.6023/A17120557 shu

Deprotonation of Guanine Radical Cation in G-Quadruplex: A Combined Experimental and Theoretical Study

  • Corresponding author: Song Di, songdi@iccas.ac.cn
  • Received Date: 27 December 2017
    Available Online: 20 June 2018

    Fund Project: the National Natural Science Foundation of China 91441108the National Natural Science Foundation of China 21773257Project supported by the National Natural Science Foundation of China (Nos. 21773257, 21373233 and 91441108)the National Natural Science Foundation of China 21373233

Figures(4)

  • G-Quadruplex can be a promising candidate as molecular electronic device due to the ability of transferring hole. Extensive studies have reported that fast deprotonation of guanine radical cation (G·+) to form a neutral radical G(-H)· is the most important reaction in competition with hole transfer in DNA, hindering potential applications of DNA in molecular electronics. We thus carry out joint experimental and theoretical studies on deprotonation of G·+ in human telomere G-quadruplex AG3(T2AG3)3by using nanosecond laser flash photolysis and quantum chemical calculations. Upon 355 nm laser photolysis of Na2S2O8, instantaneously generated SO4·- radical oxidizes G base in the G-quadruplex to G·+. In the time-resolved absorption spectra that record the reaction of G-quadruplex with SO4·- at different temperatures, the transient absorptions of G(N(2)-H)· featured by absorption band at 640 nm are observed. It turns out that the G-quadruplex deprotonation product is G(N(2)-H)· and the deprotonation site is thereby validated to be amino proton. To obtain the activation energy of the G·+ deprotonation in G-quadruplex, the N(2)-H deprotonation rate constants at different temperatures varying from 280 to 300 K in steps 5 K are measured at a high G-quadruplex concentration, where the deprotonation has been proved to be the rate-limiting step in our previous work. Based upon Arrhenius equation, the deprotonation activation energy of G·+ in G-quadruplex is determined to be 20.0±1.0 kJ/mol. Further, the potential energy profile for the G·+ deprotonation in G-quadruplex is calculated at M062X/6-31G(d) level by carefully taking into account hydration environment of G·+ in G-quadruplex. The calculated energy barrier of 26.4 kJ/mol matches with the measured activation energy value, indicating the calculated potential energy profile can describe the deprotonation process of G·+ in the G-quadruplex. These theoretical and experimental results provide valuable dynamics information and mechanistic insights for potential applications of DNA structures in electronic device.
  • 加载中
    1. [1]

      Hall, D. B.; Holmlin, R. E.; Barton, J. K. Nature 1996, 382, 731.  doi: 10.1038/382731a0

    2. [2]

      Wang, X. X.; Gu, Y.; Chen, D. X.; Fang, Y. F.; Huang, Y. P. Acta Chim. Sinica 2010, 68, 2463.
       

    3. [3]

      Lu, Y. M.; Ou, Z. B.; Hu, W.; Le, X. Y. Acta Chim. Sinica 2012, 70, 973.  doi: 10.3969/j.issn.0253-2409.2012.08.011
       

    4. [4]

      Shao, B.; Mao, L.; Qu, N.; Wang, Y.-F.; Gao, H.-Y.; Li, F.; Qin, L.; Shao, J.; Huang, C.-H.; Xu, D.; Xie, L.-N.; Shen, C.; Zhou, X.; Zhu, B.-Z. Free Radical Biol. Med. 2017, 104 (Suppl. C), 54.
       

    5. [5]

      Kawai, K.; Majima, T. Acc. Chem. Res. 2013, 46, 2616.  doi: 10.1021/ar400079s

    6. [6]

      Endres, R. G.; Cox, D. L.; Singh, R. R. P. Rev. Mod. Phys. 2004, 76, 195.  doi: 10.1103/RevModPhys.76.195

    7. [7]

      Okamoto, A.; Tanaka, K.; Saito, I. J. Am. Chem. Soc. 2003, 125, 5066.  doi: 10.1021/ja0294008

    8. [8]

      Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Science 2001, 294, 567.  doi: 10.1126/science.1062864

    9. [9]

      Giese, B. Acc. Chem. Res. 2000, 33, 631.  doi: 10.1021/ar990040b

    10. [10]

      Faraggi, M.; Broitman, F.; Trent, J. B.; Klapper, M. H. J. Phys. Chem. 1996, 100, 14751.  doi: 10.1021/jp960590g

    11. [11]

      Cleveland, C. L.; Barnett, R. N.; Bongiorno, A.; Joseph, J.; Liu, C. S.; Schuster, G. B.; Landman, U. J. Am. Chem. Soc. 2007, 129, 8408.  doi: 10.1021/ja071893z

    12. [12]

      Kawai, K.; Osakada, Y.; Majima, T. ChemPhysChem 2009, 10, 1766  doi: 10.1002/cphc.v10:11

    13. [13]

      Kobayashi, K.; Yamagami, R.; Tagawa, S. J. Phys. Chem. B 2008, 112, 10752.  doi: 10.1021/jp804005t

    14. [14]

      Wu, L. D.; Liu, K. H.; Jie, J. L.; Song, D.; Su, H. M. J. Am. Chem. Soc. 2015, 137, 259.  doi: 10.1021/ja510285t

    15. [15]

      Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 1094.  doi: 10.1021/ja00185a046

    16. [16]

      Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1992, 114, 699.  doi: 10.1021/ja00028a043

    17. [17]

      Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.  doi: 10.1021/ja036211w

    18. [18]

      Steenken, S.; Reynisson, J. Phys. Chem. Chem. Phys. 2010, 12, 9088.  doi: 10.1039/c002528c

    19. [19]

      Cerón-Carrasco, J. P.; Requena, A.; Perpète, E. A.; Michaux, C.; Jacquemin, D. J. Phys. Chem. B 2010, 114, 13439.  doi: 10.1021/jp101711z

    20. [20]

      Takada, T.; Kawai, K.; Fujitsuka, M.; Majima, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14002.  doi: 10.1073/pnas.0402756101

    21. [21]

      Choi, J.; Park, J.; Tanaka, A.; Park, M. J.; Jang, Y. J.; Fujitsuka, M.; Kim, S. K.; Majima, T. Angew. Chem., Int. Ed. 2013, 52, 1134.  doi: 10.1002/anie.201208149

    22. [22]

      Delaney, S.; Barton, J. K. Biochemistry 2003, 42, 14159.  doi: 10.1021/bi0351965

    23. [23]

      Szalai, V. A.; Thorp, H. H. J. Am. Chem. Soc. 2000, 122, 4524.  doi: 10.1021/ja0001355

    24. [24]

      Song, D.; Yang, W.; Qin, T.; Wu, L.; Liu, K.; Su, H. J. Phys. Chem. Lett. 2014, 5, 2259.  doi: 10.1021/jz501040a

    25. [25]

      Wolter, M.; Elstner, M.; Kubař, T. J. Chem. Phys. 2013, 139, 125102.  doi: 10.1063/1.4821594

    26. [26]

      Barnett, R. N.; Bongiorno, A.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. J. Am. Chem. Soc. 2006, 128, 10795.  doi: 10.1021/ja061795y

    27. [27]

      Rokhlenko, Y.; Geacintov, N. E.; Shafirovich, V. J. Am. Chem. Soc. 2012, 134, 4955.  doi: 10.1021/ja212186w

    28. [28]

      Rokhlenko, Y.; Cadet, J.; Geacintov, N. E.; Shafirovich, V. J. Am. Chem. Soc. 2014, 136, 5956.  doi: 10.1021/ja412471u

    29. [29]

      Saintome, C.; Amrane, S.; Mergny, J. L.; Alberti, P. Nucleic Acids Res. 2016, 44, 2926.  doi: 10.1093/nar/gkw003

    30. [30]

      Wu, L. D.; Jie, J. L.; Liu, K. H.; Su, H. M. Acta Chim. Sinica 2014, 72, 1182.
       

    31. [31]

      Morikawa, M.; Kino, K.; Oyoshi, T.; Suzuki, M.; Kobayashi, T.; Miyazawa, H. Bioorg. Med. Chem. Lett. 2015, 25, 3359.  doi: 10.1016/j.bmcl.2015.05.050

    32. [32]

      Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2008, 112, 1095.
       

    33. [33]

      Galano, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2012, 14, 12476.  doi: 10.1039/c2cp40799j

    34. [34]

      Li, J.; Fu, K.-X.; Li, X.-Y. J. Mol. Struct.:THEOCHEM. 2007, 819, 32.  doi: 10.1016/j.theochem.2007.05.031

    35. [35]

      Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. B 2001, 105, 10115.  doi: 10.1021/jp012364z

    36. [36]

      Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113, 11359.  doi: 10.1021/jp903403d

    37. [37]

      Horvath, M. P.; Schultz, S. C. J. Mol. Biol. 2001, 310, 367.  doi: 10.1006/jmbi.2001.4766

    38. [38]

      Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Nature 2002, 417, 876.  doi: 10.1038/nature755

    39. [39]

      Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 397, 601.  doi: 10.1038/17579

    40. [40]

      Berkelbach, T. C.; Lee, H. S.; Tuckerman, M. E. Phys. Rev. Lett. 2009, 238302.

    41. [41]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Montgomery, J. A. ; Vreven, T. ; Kudin, K. N. ; Burant, J. C. ; Millam, J. M. ; Iyengar, S. S. ; Tomasi, J. ; Barone, V. ; Mennucci, B. ; Cossi, M. ; Scalmani, G. ; Rega, N. ; Petersson, G. A. ; Nakatsuji, H. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Ha-segawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Klene, M. ; Li, X. ; Knox, J. E. ; Hratchian, H. P. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Ayala, P. Y. ; Morokuma, K. ; Voth, G. A. ; Salvador, P. ; Dannen-berg, J. J. ; Zakrzewski, V. G. ; Dapprich, S. ; Daniels, A. D. ; Strain, M. C. ; Farkas, O. ; Malick, D. K. ; Rabuck, A. D. ; Raghavachari, K. ; Foresman, J. B. ; Ortiz, J. V. ; Cui, Q. ; Baboul, A. G. ; Clifford, S. ; Cioslowski, J. ; Stefanov, B. B. ; Liu, G. ; Liashenko, A. ; Piskorz, P. ; Komaromi, I. ; Martin, R. L. ; Fox, D. J. ; Keith, T. ; Al-Laham, M. A. ; Peng, C. Y. ; Nanayakkara, A. ; Challacombe, M. ; Gill, P. M. W. ; Johnson, B. ; Chen, W. ; Wong, M. W. ; Gonzalez, C. ; Pople, J. A. Gaussian 09, Revision A. 01, Gaussian, Inc., Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    20. [20]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

Metrics
  • PDF Downloads(6)
  • Abstract views(1815)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return