Citation: Wang Yinghui, Jie Jialong, Zhao Hongmei, Bai Yu, Qin Peixuan, Song Di. Deprotonation of Guanine Radical Cation in G-Quadruplex: A Combined Experimental and Theoretical Study[J]. Acta Chimica Sinica, ;2018, 76(6): 475-482. doi: 10.6023/A17120557 shu

Deprotonation of Guanine Radical Cation in G-Quadruplex: A Combined Experimental and Theoretical Study

  • Corresponding author: Song Di, songdi@iccas.ac.cn
  • Received Date: 27 December 2017
    Available Online: 20 June 2018

    Fund Project: the National Natural Science Foundation of China 91441108the National Natural Science Foundation of China 21773257Project supported by the National Natural Science Foundation of China (Nos. 21773257, 21373233 and 91441108)the National Natural Science Foundation of China 21373233

Figures(4)

  • G-Quadruplex can be a promising candidate as molecular electronic device due to the ability of transferring hole. Extensive studies have reported that fast deprotonation of guanine radical cation (G·+) to form a neutral radical G(-H)· is the most important reaction in competition with hole transfer in DNA, hindering potential applications of DNA in molecular electronics. We thus carry out joint experimental and theoretical studies on deprotonation of G·+ in human telomere G-quadruplex AG3(T2AG3)3by using nanosecond laser flash photolysis and quantum chemical calculations. Upon 355 nm laser photolysis of Na2S2O8, instantaneously generated SO4·- radical oxidizes G base in the G-quadruplex to G·+. In the time-resolved absorption spectra that record the reaction of G-quadruplex with SO4·- at different temperatures, the transient absorptions of G(N(2)-H)· featured by absorption band at 640 nm are observed. It turns out that the G-quadruplex deprotonation product is G(N(2)-H)· and the deprotonation site is thereby validated to be amino proton. To obtain the activation energy of the G·+ deprotonation in G-quadruplex, the N(2)-H deprotonation rate constants at different temperatures varying from 280 to 300 K in steps 5 K are measured at a high G-quadruplex concentration, where the deprotonation has been proved to be the rate-limiting step in our previous work. Based upon Arrhenius equation, the deprotonation activation energy of G·+ in G-quadruplex is determined to be 20.0±1.0 kJ/mol. Further, the potential energy profile for the G·+ deprotonation in G-quadruplex is calculated at M062X/6-31G(d) level by carefully taking into account hydration environment of G·+ in G-quadruplex. The calculated energy barrier of 26.4 kJ/mol matches with the measured activation energy value, indicating the calculated potential energy profile can describe the deprotonation process of G·+ in the G-quadruplex. These theoretical and experimental results provide valuable dynamics information and mechanistic insights for potential applications of DNA structures in electronic device.
  • 加载中
    1. [1]

      Hall, D. B.; Holmlin, R. E.; Barton, J. K. Nature 1996, 382, 731.  doi: 10.1038/382731a0

    2. [2]

      Wang, X. X.; Gu, Y.; Chen, D. X.; Fang, Y. F.; Huang, Y. P. Acta Chim. Sinica 2010, 68, 2463.
       

    3. [3]

      Lu, Y. M.; Ou, Z. B.; Hu, W.; Le, X. Y. Acta Chim. Sinica 2012, 70, 973.  doi: 10.3969/j.issn.0253-2409.2012.08.011
       

    4. [4]

      Shao, B.; Mao, L.; Qu, N.; Wang, Y.-F.; Gao, H.-Y.; Li, F.; Qin, L.; Shao, J.; Huang, C.-H.; Xu, D.; Xie, L.-N.; Shen, C.; Zhou, X.; Zhu, B.-Z. Free Radical Biol. Med. 2017, 104 (Suppl. C), 54.
       

    5. [5]

      Kawai, K.; Majima, T. Acc. Chem. Res. 2013, 46, 2616.  doi: 10.1021/ar400079s

    6. [6]

      Endres, R. G.; Cox, D. L.; Singh, R. R. P. Rev. Mod. Phys. 2004, 76, 195.  doi: 10.1103/RevModPhys.76.195

    7. [7]

      Okamoto, A.; Tanaka, K.; Saito, I. J. Am. Chem. Soc. 2003, 125, 5066.  doi: 10.1021/ja0294008

    8. [8]

      Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Science 2001, 294, 567.  doi: 10.1126/science.1062864

    9. [9]

      Giese, B. Acc. Chem. Res. 2000, 33, 631.  doi: 10.1021/ar990040b

    10. [10]

      Faraggi, M.; Broitman, F.; Trent, J. B.; Klapper, M. H. J. Phys. Chem. 1996, 100, 14751.  doi: 10.1021/jp960590g

    11. [11]

      Cleveland, C. L.; Barnett, R. N.; Bongiorno, A.; Joseph, J.; Liu, C. S.; Schuster, G. B.; Landman, U. J. Am. Chem. Soc. 2007, 129, 8408.  doi: 10.1021/ja071893z

    12. [12]

      Kawai, K.; Osakada, Y.; Majima, T. ChemPhysChem 2009, 10, 1766  doi: 10.1002/cphc.v10:11

    13. [13]

      Kobayashi, K.; Yamagami, R.; Tagawa, S. J. Phys. Chem. B 2008, 112, 10752.  doi: 10.1021/jp804005t

    14. [14]

      Wu, L. D.; Liu, K. H.; Jie, J. L.; Song, D.; Su, H. M. J. Am. Chem. Soc. 2015, 137, 259.  doi: 10.1021/ja510285t

    15. [15]

      Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 1094.  doi: 10.1021/ja00185a046

    16. [16]

      Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1992, 114, 699.  doi: 10.1021/ja00028a043

    17. [17]

      Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.  doi: 10.1021/ja036211w

    18. [18]

      Steenken, S.; Reynisson, J. Phys. Chem. Chem. Phys. 2010, 12, 9088.  doi: 10.1039/c002528c

    19. [19]

      Cerón-Carrasco, J. P.; Requena, A.; Perpète, E. A.; Michaux, C.; Jacquemin, D. J. Phys. Chem. B 2010, 114, 13439.  doi: 10.1021/jp101711z

    20. [20]

      Takada, T.; Kawai, K.; Fujitsuka, M.; Majima, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14002.  doi: 10.1073/pnas.0402756101

    21. [21]

      Choi, J.; Park, J.; Tanaka, A.; Park, M. J.; Jang, Y. J.; Fujitsuka, M.; Kim, S. K.; Majima, T. Angew. Chem., Int. Ed. 2013, 52, 1134.  doi: 10.1002/anie.201208149

    22. [22]

      Delaney, S.; Barton, J. K. Biochemistry 2003, 42, 14159.  doi: 10.1021/bi0351965

    23. [23]

      Szalai, V. A.; Thorp, H. H. J. Am. Chem. Soc. 2000, 122, 4524.  doi: 10.1021/ja0001355

    24. [24]

      Song, D.; Yang, W.; Qin, T.; Wu, L.; Liu, K.; Su, H. J. Phys. Chem. Lett. 2014, 5, 2259.  doi: 10.1021/jz501040a

    25. [25]

      Wolter, M.; Elstner, M.; Kubař, T. J. Chem. Phys. 2013, 139, 125102.  doi: 10.1063/1.4821594

    26. [26]

      Barnett, R. N.; Bongiorno, A.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. J. Am. Chem. Soc. 2006, 128, 10795.  doi: 10.1021/ja061795y

    27. [27]

      Rokhlenko, Y.; Geacintov, N. E.; Shafirovich, V. J. Am. Chem. Soc. 2012, 134, 4955.  doi: 10.1021/ja212186w

    28. [28]

      Rokhlenko, Y.; Cadet, J.; Geacintov, N. E.; Shafirovich, V. J. Am. Chem. Soc. 2014, 136, 5956.  doi: 10.1021/ja412471u

    29. [29]

      Saintome, C.; Amrane, S.; Mergny, J. L.; Alberti, P. Nucleic Acids Res. 2016, 44, 2926.  doi: 10.1093/nar/gkw003

    30. [30]

      Wu, L. D.; Jie, J. L.; Liu, K. H.; Su, H. M. Acta Chim. Sinica 2014, 72, 1182.
       

    31. [31]

      Morikawa, M.; Kino, K.; Oyoshi, T.; Suzuki, M.; Kobayashi, T.; Miyazawa, H. Bioorg. Med. Chem. Lett. 2015, 25, 3359.  doi: 10.1016/j.bmcl.2015.05.050

    32. [32]

      Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2008, 112, 1095.
       

    33. [33]

      Galano, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2012, 14, 12476.  doi: 10.1039/c2cp40799j

    34. [34]

      Li, J.; Fu, K.-X.; Li, X.-Y. J. Mol. Struct.:THEOCHEM. 2007, 819, 32.  doi: 10.1016/j.theochem.2007.05.031

    35. [35]

      Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. B 2001, 105, 10115.  doi: 10.1021/jp012364z

    36. [36]

      Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113, 11359.  doi: 10.1021/jp903403d

    37. [37]

      Horvath, M. P.; Schultz, S. C. J. Mol. Biol. 2001, 310, 367.  doi: 10.1006/jmbi.2001.4766

    38. [38]

      Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Nature 2002, 417, 876.  doi: 10.1038/nature755

    39. [39]

      Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 397, 601.  doi: 10.1038/17579

    40. [40]

      Berkelbach, T. C.; Lee, H. S.; Tuckerman, M. E. Phys. Rev. Lett. 2009, 238302.

    41. [41]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Montgomery, J. A. ; Vreven, T. ; Kudin, K. N. ; Burant, J. C. ; Millam, J. M. ; Iyengar, S. S. ; Tomasi, J. ; Barone, V. ; Mennucci, B. ; Cossi, M. ; Scalmani, G. ; Rega, N. ; Petersson, G. A. ; Nakatsuji, H. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Ha-segawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Klene, M. ; Li, X. ; Knox, J. E. ; Hratchian, H. P. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Ayala, P. Y. ; Morokuma, K. ; Voth, G. A. ; Salvador, P. ; Dannen-berg, J. J. ; Zakrzewski, V. G. ; Dapprich, S. ; Daniels, A. D. ; Strain, M. C. ; Farkas, O. ; Malick, D. K. ; Rabuck, A. D. ; Raghavachari, K. ; Foresman, J. B. ; Ortiz, J. V. ; Cui, Q. ; Baboul, A. G. ; Clifford, S. ; Cioslowski, J. ; Stefanov, B. B. ; Liu, G. ; Liashenko, A. ; Piskorz, P. ; Komaromi, I. ; Martin, R. L. ; Fox, D. J. ; Keith, T. ; Al-Laham, M. A. ; Peng, C. Y. ; Nanayakkara, A. ; Challacombe, M. ; Gill, P. M. W. ; Johnson, B. ; Chen, W. ; Wong, M. W. ; Gonzalez, C. ; Pople, J. A. Gaussian 09, Revision A. 01, Gaussian, Inc., Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

Metrics
  • PDF Downloads(6)
  • Abstract views(1881)
  • HTML views(267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return