Citation: Ye Changqing, Chen Shuoran, Li Fengyu, Ge Jie, Yong Peiyi, Qin Meng, Song Yanlin. Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis[J]. Acta Chimica Sinica, ;2018, 76(4): 237-245. doi: 10.6023/A17120555 shu

Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis

  • Corresponding author: Li Fengyu, forrest@iccas.ac.cn Song Yanlin, ylsong@iccas.ac.cn
  • Received Date: 26 December 2017
    Available Online: 22 April 2018

    Fund Project: Natural Science Foundation of Jiangsu Province BK20160358Six Talent Summits Project of Jiangsu Province XCL-79the "Strategic Priority Research Program" of Chinese Academy of Sciences XDA09020000the National Natural Science Foundation of China 51603141Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation BK20170065Project supported by Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation (No. BK20170065), Natural Science Foundation of Jiangsu Province (No. BK20160358), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 17KJA430016), Six Talent Summits Project of Jiangsu Province (No.XCL-79), Qing Lan Project, the National Natural Science Foundation of China (Nos. 51603141, 51473172, 51473173) and the "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA09020000)the National Natural Science Foundation of China 51473173the National Natural Science Foundation of China 51473172Natural Science Foundation of the Higher Education Institutions of Jiangsu Province 17KJA430016

Figures(7)

  • The traditional "lock and key" sensor models pursue the "one to one" sensing response for the specific testing and the low limitation of detection, which neglect the practical sample detecting application with multi-analytes and complex contains. Utilizing multi-sensor compounds, the sensor array chip offers multiplex differential sensing response signal to process the multi-analytes discrimination. The critical requirement for successful multi-analyte recognition is to acquire abundant sensing information. However, the "multi to multi" sensor chip needs large numbers of serial probe compounds, which involve com-plicated chemical synthesis and valid compound screening. Inspired by the human sense organ, scientists developed various "cross-reactive" sensor arrays. Here, The recent research progress of multi-analysis and "one to multi" high-efficient detection were introduced. From chemical information excavation, physical signal enhancement, devices integration design, we summarize and forecast the multi-analysis advancement and intelligent sensors.
  • 加载中
    1. [1]

      Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595.  doi: 10.1021/cr980102w

    2. [2]

      Gardner, J. W. ; Bartlett, P. N. Electronic Noses: Principles and Applications, Oxford University Press, Oxford, 1999, p. 245.

    3. [3]

      Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z. Nature 2013, 495, 223.  doi: 10.1038/nature11906

    4. [4]

      Persaud, K.; Dodd, G. Nature 1982, 299, 352.  doi: 10.1038/299352a0

    5. [5]

      Stears, R. L.; Martinsky, T.; Schena, M. Nat. Med. 2003, 9, 140.  doi: 10.1038/nm0103-140

    6. [6]

      Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14.  doi: 10.1039/B505518K

    7. [7]

      Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 2001, 40, 3118.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Palacios, M. A.; Nishiyabu, R.; Marquez, M.; Anzenbacher, P. J. Am. Chem. Soc. 2007, 129, 7538.  doi: 10.1021/ja0704784

    9. [9]

      Rakow, N. A.; Suslick, K. S. Nature 2000, 406, 710.  doi: 10.1038/35021028

    10. [10]

      Folmer-Andersen, J. F.; Kitamura, M.; Anslyn, E. V. J. Am. Chem. Soc. 2006, 128, 5652.  doi: 10.1021/ja061313i

    11. [11]

      Wu, Y.-Y.; Na, N.; Zhang, S.-C.; Wang, X.; Liu, D.; Zhang, X.-R. Anal. Chem. 2009, 81, 961.  doi: 10.1021/ac801733k

    12. [12]

      Han, M.; Gao, X.; Su, J.; Nie, S. Nat. Biotechnol. 2001, 19, 631.  doi: 10.1038/90228

    13. [13]

      Rout, B.; Unger, L.; Armony, G.; Iron, M. A.; Margulies, D. Angew. Chem., Int. Ed. 2012, 51, 12477.  doi: 10.1002/anie.201206374

    14. [14]

      You, C. C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I. B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M. Nat. Nanotechnol. 2007, 2, 318.  doi: 10.1038/nnano.2007.99

    15. [15]

      Palacios, M. A.; Wang, Z.; Montes, V. A. J. Am. Chem. Soc. 2008, 130, 10307.  doi: 10.1021/ja802377k

    16. [16]

      Rout, B.; Unger, L.; Armony, G. Angew. Chem., Int. Ed. 2012, 51, 12477.  doi: 10.1002/anie.201206374

    17. [17]

      Kim, J.; Wu, X.; Herman, M. R. Anal. Chim. Acta 1998, 370, 251.  doi: 10.1016/S0003-2670(98)00292-X

    18. [18]

      Wang, Z.; Palacios, M. A.; Anzenbacher, P. Anal. Chem. 2008, 80, 7451.  doi: 10.1021/ac801165v

    19. [19]

      Huang, Y.; Li, F.; Qin, M. Angew. Chem., Int. Ed. 2013, 52, 7296.  doi: 10.1002/anie.201302311

    20. [20]

      Anzenbacher, P.; Lubal, P.; Bucek, P. Chem. Soc. Rev. 2010, 39, 3954.  doi: 10.1039/b926220m

    21. [21]

      Smyth, H.; Cozzolino, D. Chem. Rev. 2012, 113, 1429.
       

    22. [22]

      Irie, M. Chem. Rev. 2000, 100, 1685.  doi: 10.1021/cr980069d

    23. [23]

      Wang, S.; Shen, W.; Feng, Y.-L.; Tian, H. Chem. Commun. 2006, 14, 1497.
       

    24. [24]

      Jiang, G.-Y.; Wang, S.; Yuan, W.-F.; Zhao, Z.; Duan, A.-J.; Xu, C.-M.; Jiang, L.; Song, Y.-L. Eur. J. Org. Chem. 2007, 2007, 2064.  doi: 10.1002/(ISSN)1099-0690

    25. [25]

      Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125, 13684.  doi: 10.1021/ja036306y

    26. [26]

      Wagner, K.; Byrne, R.; Zanoni, M. J. Am. Chem. Soc. 2011, 133, 5453.  doi: 10.1021/ja1114634

    27. [27]

      Huang, Y.; Li, F.-Y.; Ye, C.-Q.; Qin, M.; Ran, W.; Song, Y.-L. Sci. Rep. 2015, 5, 9724.  doi: 10.1038/srep09724

    28. [28]

      Fischer, E.; Hirshberg, Y. J. Chem. Soc. 1952, 868, 4522.

    29. [29]

      Fries, K. H.; Driskell, J. D.; Samanta, S.; Locklin, J. Anal. Chem. 2010, 82, 3306.  doi: 10.1021/ac1001004

    30. [30]

      Rusin, O.; St. Luce, N. N.; Agbaria, R. A. J. Am. Chem. Soc. 2004, 126, 438.  doi: 10.1021/ja036297t

    31. [31]

      Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fa-kayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949.  doi: 10.1021/ja054962n

    32. [32]

      Yang, X.; Guo, Y.; Strongin, R. M. Angew. Chem., Int. Ed. 2011, 50, 10690.  doi: 10.1002/anie.201103759

    33. [33]

      Zhang, M.; Yu, M.-X.; Li, F.-Y.; Zhu, M.-W.; Li, M.-Y.; Gao, Y.-H.; Li, L.; Liu, Z.-Q.; Zhang, J.-P.; Zhang, D.-P.; Yi, T.; Huang, C.-H. J. Am. Chem. Soc. 2007, 129, 10322.  doi: 10.1021/ja073140i

    34. [34]

      Jung, H. S.; Pradhan, T.; Han, J. H.; Heo, K. J.; Lee, J. H.; Kang, C.; Kim, J. S. Biomaterials 2012, 33, 8495.  doi: 10.1016/j.biomaterials.2012.08.009

    35. [35]

      Aït-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 11296.  doi: 10.1021/ja011905v

    36. [36]

      Hortalá, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. J. Am. Chem. Soc. 2003, 125, 20.  doi: 10.1021/ja027110l

    37. [37]

      Kong, H.; Liu, D.; Zhang, S.-C.; Zhang, X.-R. Anal. Chem. 2011, 83, 1867.  doi: 10.1021/ac200076c

    38. [38]

      Rochat, S.; Gao, J.; Qian, X.; Zaubitzer, F.; Severin, K. Chem. Eur. J. 2010, 16, 104.  doi: 10.1002/chem.v16:1

    39. [39]

      Zhou, Y.; Yoon, J. Chem. Soc. Rev. 2012, 41, 52.  doi: 10.1039/C1CS15159B

    40. [40]

      Greene, N. T.; Shimizu, K. D. J. Am. Chem. Soc. 2005, 127, 5695.  doi: 10.1021/ja0468022

    41. [41]

      Pavel, A.; Li, F.-Y.; Palacios, M. A. Angew. Chem., Int. Ed. 2012, 51, 2345.  doi: 10.1002/anie.v51.10

    42. [42]

      Dean, K. E. S.; Klein, G.; Renaudet, O.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 1653.  doi: 10.1016/S0960-894X(03)00280-4

    43. [43]

      Xu, X.; Goponenko, A. V.; Asher, S. A. J. Am. Chem. Soc. 2008, 130, 3113.  doi: 10.1021/ja077979+

    44. [44]

      Pathak, R. K.; Dessingou, J.; Rao, C. P. Anal. Chem. 2012, 84, 8294.  doi: 10.1021/ac301821c

    45. [45]

      Qin, M.; Li, F.-Y.; Huang, Y.; Ran, W.; Han, D.; Song, Y.-L. Anal. Chem. 2014, 87, 837.
       

    46. [46]

      Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125, 13684.  doi: 10.1021/ja036306y

    47. [47]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.  doi: 10.1103/PhysRevLett.58.2059

    48. [48]

      John, S. Phys. Rev. Lett. 1987, 58, 2486.  doi: 10.1103/PhysRevLett.58.2486

    49. [49]

      Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Loncar, M.; Aizenberg, J. J. Am. Chem. Soc. 2011, 133, 12430.  doi: 10.1021/ja2053013

    50. [50]

      Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2006, 18, 1915.  doi: 10.1002/(ISSN)1521-4095

    51. [51]

      Mihi, A.; Zhang, C.; Braun, P. V. Angew. Chem., Int. Ed. 2011, 50, 5712.  doi: 10.1002/anie.201100446

    52. [52]

      Ward, A. J.; Pendry, J. B. Phys. Rev. B 1998, 58, 7252.  doi: 10.1103/PhysRevB.58.7252

    53. [53]

      John, S.; Quang, T. Phys. Rev. A 1994, 50, 1764.  doi: 10.1103/PhysRevA.50.1764

    54. [54]

      Thijssen, M. S.; Sprik, R.; Wijnhoven, J. E. G. J.; Megens, M.; Narayanan, T.; Lagendijk, A.; Vos, W. L. Phys. Rev. Lett. 1999, 83, 2730.  doi: 10.1103/PhysRevLett.83.2730

    55. [55]

      Bardez, E.; Devol, I.; Larrey, B.; Valeur, B. J. Phys. Chem. B 1997, 101, 7786.  doi: 10.1021/jp971293u

    56. [56]

      Qin, M.; Huang, Y.; Li, Y.-N.; Su, M.; Chen, B.-D.; Sun, H.; Yong, P.-Y.; Ye, C.-Q.; Li, F.-Y.; Song, Y.-L. Angew. Chem., Int. Ed. 2016, 55, 6911.  doi: 10.1002/anie.201602582

    57. [57]

      Bonifacio, L. D.; Puzzo, D. P.; Breslav, S.; Willey, B. M.; McGeer, A.; Ozin, G. A. Adv. Mater. 2010, 22, 1351.  doi: 10.1002/adma.200902763

    58. [58]

      Xie, Z.; Cao, K.; Zhao, Y.; Bai, L.; Gu, H.; Xu, H.; Gu, Z.-Z. Adv. Mater. 2014, 26, 2413.  doi: 10.1002/adma.v26.15

    59. [59]

      Hu, X.-B.; Huang, J.; Zhang, W.-X.; Li, M.-H.; Tao, C.-G.; Li, G.-T. Adv. Mater. 2008, 20, 4074.  doi: 10.1002/adma.v20:21

    60. [60]

      Cui, J.-C.; Zhu, W.; Gao, N.; Li, J.; Yang, H.-W.; Jiang, Y.; Seidel, P.; Ravoo, B. J.; Li, G.-T. Angew. Chem., Int. Ed. 2014, 53, 3844  doi: 10.1002/anie.201308959

    61. [61]

      Cui, J.-C.; Gao, N.; Wang, C.; Zhu, W.; Li, J.; Wang, H.; Seidel, P.; Ravoo, B. J.; Li, G.-T. Nanoscale 2014, 6, 11995.  doi: 10.1039/C4NR03095H

    62. [62]

      Zhang, Y.-Q.; Fu, Q.-Q.; Ge, J.-P. Nat. Commun. 2015, 6, 7510.  doi: 10.1038/ncomms8510

    63. [63]

      Kim, F. S.; Ren, G.; Jenekhe, S. A. Chem. Mater. 2010, 23, 682.
       

    64. [64]

      Ding, B.; Wang, M.-R.; Wang, X.-F.; Yu, J.-Y.; Sun, G. Mater. Today 2010, 13, 16.
       

    65. [65]

      Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.-K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z.-N. Nat. Nanotechnol. 2011, 6, 788.  doi: 10.1038/nnano.2011.184

    66. [66]

      Li, Y.-D.; Li, Y.-N.; Su, M.; Li, W.-B.; Li, Y.-F.; Li, H.-Z.; Qian, X.; Zhang, X.-Y.; Li, F.-Y.; Song, Y.-L. Adv. Electron. Mater. 2017, 3, 1700253.  doi: 10.1002/aelm.201700253

    67. [67]

      Shen, W.-Z.; Li, M.-Z.; Ye, C.-Q.; Jiang, L.; Song, Y.-L. Lab. Chip. 2012, 12, 3089.  doi: 10.1039/c2lc40311k

    68. [68]

      Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Song, Y.-L.; Jiang, L. Angew. Chem., Int. Ed. 2014, 53, 5791.  doi: 10.1002/anie.201400686

    69. [69]

      Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Jiang, L.; Song, Y.-L. Small 2015, 11, 2738.  doi: 10.1002/smll.201403640

    70. [70]

      Maheshwari, V.; Saraf, R. F. Science 2006, 312, 1501.  doi: 10.1126/science.1126216

    71. [71]

      Windmiller, J. R.; Wang, J. Electroanalysis 2013, 25, 29.  doi: 10.1002/elan.201200349

    72. [72]

      Su, M.; Li, F.-Y.; Chen, S.-R.; Huang, Z.-D.; Qin, M.; Li, W.-B.; Zhang, X.-Y.; Song, Y.-L. Adv. Mater. 2016, 28, 1369.  doi: 10.1002/adma.v28.7

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(12)
  • Abstract views(1195)
  • HTML views(299)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return