Citation: Pan Bina, Zhu Yi-Zhou, Qiu Changjuana, Wang Binga, Zheng Jian-Yu. Synthesis of Phenothiazine Dyes Featuring Benzothiadiazole Unit for Efficient Dye-sensitized Solar Cells[J]. Acta Chimica Sinica, ;2018, 76(3): 215-223. doi: 10.6023/A17120543 shu

Synthesis of Phenothiazine Dyes Featuring Benzothiadiazole Unit for Efficient Dye-sensitized Solar Cells

  • Corresponding author: Zhu Yi-Zhou, zhuyizhou@nankai.edu.cn Zheng Jian-Yu, jyzheng@nankai.edu.cn
  • Received Date: 17 December 2017
    Available Online: 22 March 2018

    Fund Project: Tianjin Natural Science Foundation 16JCYBJC16700Project supported by the National Natural Science Foundation of China (No. 21572108) and Tianjin Natural Science Foundation (No. 16JCYBJC16700)the National Natural Science Foundation of China 21572108

Figures(7)

  • Dye-sensitized solar cells (DSSCs), as an emerging solar energy conversion technology, have attracted increasing attention for their ease of fabrication, low production cost, wide variety of dye structure, and high power conversion efficiency (PCE). As the critical component of DSSCs, photosensitizers play an important role in photon capturing, charge generation and separation, as well as electron injection at the semiconductor interface. Efforts on the design and synthesis of photosensitizers are thus an effective and straightforward way to tune the photovoltaic performance. In this article, three novel phenothiazine-based D-A-π-A type organic dyes (JY50~JY52) featuring benzothiadiazole units as auxiliary acceptors have been synthesized and applied in DSSCs. The introduction of auxiliary acceptor would take the advantages of the optimization of the dyes' energy levels and light absorption. To get more impressive device efficiency, 4-hexylbenzene group was decorated onto phenothiazine donor and has proved to be effective for improving the molar absorption coefficient and suppressing the charge recombination, finally resulting in the enhancement of photocurrent (Jsc) and photovoltage (Voc). In order to investigate the effect of different electron acceptor/anchoring group, benzoic acid and cyanoacrylic acid, which are widely applied in porphyrin-based dyes and metal-free organic dyes, respectively, are employed here to construct the target dyes. As we can see from the obtained photovoltaic performance data, dyes (JY50 and JY51) with benzoic acid anchor seem more beneficial to gain a higher Voc, this may be ascribed to its nearly vertical adsorption geometry on the TiO2 interface and the resulting decrease of the charge recombination. As for dye (JY52) with cyanoacrylic acid anchor, a better Jsc value is achieved because cyanoacrylic acid endows dye an extended conjugated system and an enhanced intramolecular charge transfer. Under AM 1.5 solar light conditions, the dye JY51 with 4-hexylbenzene unit and benzoic acid acceptor exhibited the highest PCE of 7.61%, with Voc of 797 mV and Jsc of 14.21 mA·cm-2.
  • 加载中
    1. [1]

      Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  doi: 10.1021/cr900356p

    2. [2]

      Liang, M.; Chen, J. Chem. Soc. Rev. 2013, 42, 3453.  doi: 10.1039/c3cs35372a

    3. [3]

      Li, L. L.; Diau, E. W. G. Chem. Soc. Rev. 2013, 42, 291.  doi: 10.1039/C2CS35257E

    4. [4]

      Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Ed. 2009, 48, 2474.  doi: 10.1002/anie.v48:14

    5. [5]

      Huang, Z. S.; Meier, H.; Cao, D. R. J. Mater. Chem. C 2016, 4, 2404.  doi: 10.1039/C5TC04418A

    6. [6]

      Urbani, M.; Grätzel, M.; Nazeeruddin, M. K.; Torres, T. Chem. Rev. 2014, 114, 12330.  doi: 10.1021/cr5001964

    7. [7]

      Zhao, C.; Wang, Z.; Zhou, K.; Ge, H.; Zhang, Q.; Jin, L.; Wang, W.; Yin, S. Acta Chim. Sinica 2016, 74, 251.  doi: 10.3969/j.issn.0253-2409.2016.02.017

    8. [8]

      Zhai, W.; Zhou, E. Chin. J. Org. Chem. 2016, 36, 2786.
       

    9. [9]

      Zhou, Q. Q.; Chen, S.; Zhang, M. A.; Wang, L. D.; Li, Y. R.; Shi, G. Q. Chin. J. Chem. 2016, 34, 59.  doi: 10.1002/cjoc.201500609

    10. [10]

      Ren, J.; Sun, M. Chin. J. Org. Chem. 2016, 36, 2284.
       

    11. [11]

      Li, X.; Zhang, X.; Hua, J.; Tian, H. Mol. Syst. Des. Eng. 2017, 2, 98.  doi: 10.1039/C7ME00002B

    12. [12]

      O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  doi: 10.1038/353737a0

    13. [13]

      Zhang, X. Y.; Ying, W. J.; Wu, W. J.; Li, J.; Hua, J. L. Acta Chim. Sinica 2015, 73, 272.  doi: 10.3969/j.issn.0253-2409.2015.03.003

    14. [14]

      Li, J.; Kong, F. T.; Zhang, C. N.; Liu, W. Q.; Dai, S. Y. Acta Chim. Sinica 2010, 68, 1357.
       

    15. [15]

      Kou, D. X.; Liu, W. Q.; Hu, L. H.; Chen, S. H.; Huang, Y.; Dai, S. Y. Acta Chim. Sinica 2013, 71, 1149.
       

    16. [16]

      Liang, M.; Xu, Y. J.; Wang, X. D.; Liu, X. J.; Sun, Z.; Xue, S. Acta Chim. Sinica 2011, 69, 2092.
       

    17. [17]

      Feng, X. M.; Huang X. W.; Tan, Z.; Zhao, B.; Tan, S. T. Acta Chim. Sinica 2011, 69, 653.
       

    18. [18]

      Huang, X. W.; Deng, J. Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S. T. Acta Chim. Sinica 2012, 70, 1604.
       

    19. [19]

      Meier, H.; Huang, Z.-S.; Cao, D. J. Mater. Chem. C 2017, 5, 9828.  doi: 10.1039/C7TC03406G

    20. [20]

      Eom, Y. K.; Choi, I. T.; Kang, S. H.; Lee, J.; Kim, J.; Ju, M. J.; Kim, H. K. Adv. Energy Mater. 2015, 5, 1500300.  doi: 10.1002/aenm.201500300

    21. [21]

      Kang, M. S.; Kang, S. H.; Kim, S. G.; Choi, I. T.; Ryu, J. H.; Ju, M. J.; Cho, D.; Lee, J. Y.; Kim, H. K. Chem. Commun. 2012, 48, 9349.  doi: 10.1039/c2cc31384g

    22. [22]

      Qian, X.; Zhu, Y. Z.; Song, J.; Gao, X. P.; Zheng, J. Y. Org. Lett. 2013, 15, 6034.  doi: 10.1021/ol402931u

    23. [23]

      Qian, X.; Gao, H.-H.; Zhu, Y.-Z.; Pan, B.; Zheng, J.-Y. Dyes Pigm. 2015, 121, 152.  doi: 10.1016/j.dyepig.2015.05.015

    24. [24]

      Mao, J. Y.; He, N. N.; Ning, Z. J.; Zhang, Q.; Guo, F. L.; Chen, L.; Wu, W. J.; Hua, J. L.; Tian, H. Angew. Chem. Int. Ed. 2012, 51, 9873.  doi: 10.1002/anie.201204948

    25. [25]

      Xie, Y. S.; Wu, W. J.; Zhu, H. B.; Liu, J. C.; Zhang, W. W.; Tian, H.; Zhu, W. H. Chem. Sci. 2016, 7, 544.  doi: 10.1039/C5SC02778K

    26. [26]

      Dai, P. P.; Yang, L.; Liang, M.; Dong, H. H.; Wang, P.; Zhang, C. Y.; Sun, Z.; Xue, S. ACS Appl. Mater. Interfaces 2015, 7, 22436.  doi: 10.1021/acsami.5b06481

    27. [27]

      Wang, Z. H.; Liang, M.; Wang, L. N.; Hao, Y. J.; Wang, C. B.; Sun, Z.; Xue, S. Chem. Commun. 2013, 49, 5748.  doi: 10.1039/c3cc42121j

    28. [28]

      Ye, T.; Wang, J.; Dong, G.; Jiang, Y.; Feng, C.; Yang, Y. Chin. J. Chem. 2016, 34, 747.  doi: 10.1002/cjoc.v34.8

    29. [29]

      Han, L.; Wu, L.; Tong, Y.; Zu, X.; Jiang, S. Chin. J. Org. Chem. 2017, 37, 2940.
       

    30. [30]

      Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.  doi: 10.1021/ja00067a063

    31. [31]

      Nazeeruddin, Md. K.; Pechy, P.; Grätzel, M. Chem. Commun. 1997, 1705.

    32. [32]

      Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M. Inorg. Chem. 1999, 38, 6298.  doi: 10.1021/ic990916a

    33. [33]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; CurchodBasile, F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, Md. K.; Grätzel, M. Nat. Chem. 2014, 6, 242.  doi: 10.1038/nchem.1861

    34. [34]

      Wang, Y. Q.; Chen, B.; Wu, W. J.; Li, X.; Zhu, W. H.; Tian, H.; Xie, Y. S. Angew. Chem. Int. Ed. 2014, 53, 10779.  doi: 10.1002/anie.201406190

    35. [35]

      Xie, Y. S.; Tang, Y. Y.; Wu, W. J.; Wang, Y. Q.; Liu, J. C.; Li, X.; Tian, H.; Zhu, W. H. J. Am. Chem. Soc. 2015, 137, 14055.  doi: 10.1021/jacs.5b09665

    36. [36]

      Li, C. M.; Luo, L.; Wu, D.; Jiang, R. Y.; Lan, J. B.; Wang, R. L.; Huang, L. Y.; Yang, S. Y.; You, J. S. J. Mater. Chem. A 2016, 4, 11829.  doi: 10.1039/C6TA02888H

    37. [37]

      Jia, H.-L.; Zhang, M.-D.; Yan, W.; Ju, X.-H.; Zheng, H.-G. J. Mater. Chem. A 2016, 4, 11782.  doi: 10.1039/C6TA03740B

    38. [38]

      Luo, J.; Xu, M. F.; Li, R. Z.; Huang, K. W.; Jiang, C. Y.; Qi, Q. B.; Zeng, W. D.; Zhang, J.; Chi, C. Y.; Wang, P.; Wu, J. S. J. Am. Chem. Soc. 2014, 136, 265.  doi: 10.1021/ja409291g

    39. [39]

      Li, W.; Liu, Z.; Wu, H.; Cheng, Y.-B.; Zhao, Z.; He, H. J. Phys. Chem. C 2015, 119, 5265.  doi: 10.1021/jp509842p

    40. [40]

      Kang, S. H.; Jeong, M. J.; Eom, Y. K.; Choi, I. T.; Kwon, S. M.; Yoo, Y.; Kim, J.; Kwon, J.; Park, J. H.; Kim, H. K. Adv. Energy Mater. 2016, 1602117.

    41. [41]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawab, J.; Hanaya, M. Chem. Commun. 2015, 51, 15894.  doi: 10.1039/C5CC06759F

    42. [42]

      Wu, Y.; Zhu, W. Chem. Soc. Rev. 2013, 42, 2039.  doi: 10.1039/C2CS35346F

    43. [43]

      Ying, W. J.; Guo, F. L.; Li, J.; Zhang, Q.; Wu, W. J.; Tian, H.; Hua, J. L. ACS Appl. Mater. Interfaces 2012, 4, 4215.  doi: 10.1021/am300925e

    44. [44]

      Qu, S. Y.; Qin, C. J.; Islam, A.; Wu, Y. Z.; Zhu, W. H.; Hua, J. L.; Tian, H.; Han, L. Y. Chem. Commun. 2012, 48, 6972.  doi: 10.1039/c2cc31998e

    45. [45]

      Mao, J. Y.; Zhang, X. Y.; Liu, S. H.; Shen, Z. J.; Li, X.; Wu, W. J.; Chou, P. T.; Hua, J. L. Electrochim. Acta 2015, 179, 179.  doi: 10.1016/j.electacta.2015.05.003

    46. [46]

      Pei, K.; Wu, Y. Z.; Li, H.; Geng, Z. Y.; Tian, H.; Zhu, W. H. ACS Appl. Mater. Interfaces 2015, 7, 5296.  doi: 10.1021/am508623e

    47. [47]

      Li, H.; Wu, Y. Z.; Geng, Z. Y.; Liu, J. C.; Xu, D. D.; Zhu, W. H. J. Mater. Chem. A 2014, 2, 14649.  doi: 10.1039/C4TA02777A

    48. [48]

      Wu, Y.; Zhang, X.; Li, W.; Wang, Z.-S.; Tian, H.; Zhu, W. Adv. Energy Mater. 2012, 2, 149.  doi: 10.1002/aenm.201100341

    49. [49]

      Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W. ACS Appl. Mater. Interfaces 2012, 4, 1822.  doi: 10.1021/am3001049

    50. [50]

      Cui, Y.; Wu, Y.; Lu, X.; Zhang, X.; Zhou, G.; Miapeh, F. B.; Zhu, W.; Wang, Z.-S. Chem. Mater. 2011, 23, 4394.  doi: 10.1021/cm202226j

    51. [51]

      Chang, Y. J.; Chou, P.-T.; Lin, Y.-Z.; Watanabe, M.; Yang, C.-J.; Chin, T.-M.; Chow, T. J. J. Mater. Chem. 2012, 22, 21704.  doi: 10.1039/c2jm35556f

    52. [52]

      Hua, Y.; Chang, S.; Huang, D. D.; Zhou, X.; Zhu, X. J.; Zhao, J. Z.; Chen, T.; Wong, W. Y.; Wong, W. K. Chem. Mater. 2013, 25, 2146.  doi: 10.1021/cm400800h

    53. [53]

      Hua, Y.; Chang, S.; Wang, H.; Huang, D.; Zhao, J.; Chen, T.; Wong, W.-Y.; Wong, W.-K.; Zhu, X. J. Power Sources 2013, 243, 253.  doi: 10.1016/j.jpowsour.2013.05.157

    54. [54]

      Hua, Y.; Chang, S.; He, J.; Zhang, C. S.; Zhao, J. Z.; Chen, T.; Wong, W. Y.; Wong, W. K.; Zhu, X. J. Chem.-Eur. J. 2014, 20, 6300.  doi: 10.1002/chem.201304897

    55. [55]

      Kumar, C. V.; Raptis, D.; Koukaras, E. N.; Sygellou, L.; Lianos, P. Org. Electron. 2015, 25, 66.  doi: 10.1016/j.orgel.2015.06.009

    56. [56]

      Lin, R. Y. Y.; Wu, F. L.; Li, C. T.; Chen, P. Y.; Ho, K. C.; Lin, J. T. ChemSusChem 2015, 8, 2503.  doi: 10.1002/cssc.201500589

    57. [57]

      Zhang, X.; Gou, F.; Shi, J.; Gao, H.; Xu, C.; Zhu, Z.; Jing, H. RSC Adv. 2016, 6, 106380.  doi: 10.1039/C6RA20769C

    58. [58]

      Iqbal, Z.; Wu, W. Q.; Huang, Z. S.; Wang, L. Y.; Kuang, D. B.; Meier, H.; Cao, D. R. Dyes Pigm. 2016, 124, 63.  doi: 10.1016/j.dyepig.2015.09.001

    59. [59]

      Du, C. F.; Jiang, L.; Sun, L.; Huang, N. Y.; Deng, W. Q. RSC Adv. 2015, 5, 37574.  doi: 10.1039/C5RA05287D

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    3. [3]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(17)
  • Abstract views(1755)
  • HTML views(331)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return