Citation: Yang Baochao, Gao Shuanhu. Application of Photochemical Rearrangement of Santonin in Total Synthesis of Complex Natural Terpenoids[J]. Acta Chimica Sinica, ;2018, 76(3): 161-167. doi: 10.6023/A17120537 shu

Application of Photochemical Rearrangement of Santonin in Total Synthesis of Complex Natural Terpenoids

  • Corresponding author: Gao Shuanhu, shgao@chem.ecnu.edu.cn
  • Received Date: 11 December 2017
    Available Online: 26 March 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21422203, 21772044), the National Young Top-Notch Talent Support Program and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21772044the National Natural Science Foundation of China 21422203

Figures(7)

  • Terpenoids represent one of the largest and most diverse classes of secondary metabolites and widely exist in nature. Among them, sesquiterpene lactones are ubiquitous in a variety of medicinal plants, which are the main active ingredients of many traditional Chinese herbal medicines. However, it is extremely challenging to accomplish the total synthesis of these natural compounds. Photochemical rearrangement of santonin is an effective strategy to construct the guaianolide skeleton. Furthermore, as a renewable natural resource, santonin was extensively used in natural product total synthesis, especially complex terpenoids. In this review, a brief overview of application of photochemical rearrangement of santonin in total synthesis of natural terpenoids is presented, which mainly includes:(1) the synthesis of sesquiterpene and its oligomers, and (2) the core structure construction of some diterpenoids.
  • 加载中
    1. [1]

      Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.  doi: 10.1038/nchembio.2007.1

    2. [2]

      Zhang, D.; Xie, X.; Feng, J. S.; Wen, H. L. Chin. J. Org. Chem. 2016, 36, 202.
       

    3. [3]

      Zhou, W. S.; Huang, M. L. Acta Chim. Sinica 1956, 4, 73.
       

    4. [4]

    5. [5]

      Tang, P.; Wang, F. P. Chin. J. Org. Chem. 2013, 33, 458.
       

    6. [6]

    7. [7]

    8. [8]

      (a) Bach, T. ; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000. (b) Wan, C. Y. ; Deng, J. ; Liu, H. ; Bian, M. ; Li, A. Sci. China Chem. 2014, 57, 926. Recently Wang et al. achieve the total synthesis of (+)-Chinensiolide B from photochemical rearrangement of santonin, for details see: (c) Zhang, L. Q. ; Dai, X. L. ; Tao, L. Z. ; Xie, C. S. ; Zhang, M. ; Wang, M. Chin. J. Chem. 2017, 35, 1284.

    9. [9]

      Trommsdorff, H. Ann. Chem. Pharm. 1834, 11, 190.  doi: 10.1002/(ISSN)1099-0690

    10. [10]

      Barton, D. H. R.; de Mayo, P.; Shafiq, M. J. Chem. Soc. 1957, 929.

    11. [11]

      For selected examples, see: (a) White, E. H. ; Marx, J. N. J. Am. Chem. Soc. 1967, 89, 5511. (b) Marx, J. N. ; White, E. H. Tetrahedron 1969, 25, 2117. (c) Edgar, M. T. ; Greene, A. E. ; Crabbe, P. J. Org. Chem. 1979, 44, 159. (d) Greene, A. E. J. Am. Chem. Soc. 1980, 102, 5337. (e) Greene, A. E. ; Edgar, M. T. J. Org. Chem. 1989, 54, 1468. (f) Delair, P. ; Kann, N. ; Greene, A. E. J. Chem. Soc. Perkin Trans. 1 1994, 1651. (g) Sun, L. D. ; Tu, Y. Q. Tetrahedron Lett. 1998, 39, 7935. (h) Blay, G. ; Bargues, V. ; Cardona, L. ; Collado, A. M. ; García, B. ; Muñoz, M. C. ; Pedro, J. R. J. Org. Chem. 2000, 65, 2138. (i) Blay, G. ; Bargues, V. ; Cardona, L. ; García, B. ; Pedro, J. R. J. Org. Chem. 2000, 65, 6703. (j) Blay, G. ; Bargues, V. ; Cardona, L. ; García, B. ; Pedro, J. R. Tetrahedron 2001, 57, 9719. (k) Blay, G. ; Cardona, L. ; García, B. ; Lahoz, L. ; Pedro, J. R. J. Org. Chem. 2001, 66, 7700. (l) Xia, W. J. ; Li, D. R. ; Tu, Y. Q. Synth. Commun. 2001, 31, 1613. (m) Xia, W. J. ; Sun, L. D. ; Shi, L. ; Zhang, S. Y. ; Tu, Y. Q. Chin. J. Chem. 2004, 22, 377. (n) Makiyi, E. F. ; Frade, R. F. M. ; Lebl, T. ; Jaffray, E. G. ; Cobb, S. E. ; Harvey, A. L. ; Slawin, A. M. Z. ; Hay, R. T. ; Westwood, N. J. Eur. J. Org. Chem. 2009, 2009, 5711. (o) Dai, X. L. ; Tang, J. ; Zhang, L. Q. ; Tao, L. Z. ; Ouyang, Z. ; Wang, M. Chin. J. Org. Chem. 2015, 35, 2142. (戴笑丽, 汤建, 章凌琼, 陶连芝, 欧阳臻, 王民, 有机化学, 2015, 35, 2142. )

    12. [12]

      (a) Natarajan, A. ; Tsai, C. K. ; Khan, S. I. ; McCarren, P. ; Houk, K. N. ; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2007, 129, 9846. (b) Commins, P. ; Natarajan, A. ; Tsai, C. K. ; Khan, S. I. ; Nath, N. K. ; Naumov, P. ; Garcia-Garibay, M. A. Cryst. Growth Des. 2015, 15, 1983. (c) Chen, X. ; Tian, G. J. ; Rinkevicius, Z. ; Vahtras, O. ; Cao, Z. X. ; Ågren, H. ; Luo, Y. Chem. Phys. 2012, 405, 40. (d) Chen, X. ; Rinkevicius, Z. ; Luo, Y. ; Ågren, H. ; Cao, Z. X. ChemPhysChem 2012, 13, 353.

    13. [13]

      (a) Herout, V. ; Sorm, F. Collect. Czech. Chem. Commun. 1953, 18, 854. (b) Herout, V. ; Sorm, F. Collect. Czech. Chem. Commun. 1954, 19, 792. (c) Novotny, L. ; Herout, V. ; Sorm, F. Collect. Czech. Chem. Commun. 1960, 25, 1492 and references therein.

    14. [14]

      Zhang, W. H.; Luo, S. J.; Fang, F.; Chen, Q. S.; Hu, H. W.; Jia, X. S.; Zhai, H. B. J. Am. Chem. Soc. 2005, 127, 18.  doi: 10.1021/ja0439219

    15. [15]

      Vokac, K.; Samek, Z.; Herout, V.; Sorm, F. Tetrahedron Lett. 1968, 9, 3855.  doi: 10.1016/S0040-4039(01)99119-1

    16. [16]

      Li, C.; Yu, X. L.; Lei, X. G. Org. Lett. 2010, 12, 4284.  doi: 10.1021/ol101705j

    17. [17]

      Wu, Z. J.; Xu, X. K.; Shen, Y. H.; Su, J.; Tian, J. M.; Liang, S.; Li, H. L.; Liu, R. H.; Zhang, W. D. Org. Lett. 2008, 10, 2397.  doi: 10.1021/ol800656q

    18. [18]

      Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.  doi: 10.1021/cr068373r

    19. [19]

      (a) Li, C. ; Dian, L. Y. ; Zhang, W. D. ; Lei, X. G. J. Am. Chem. Soc. 2012, 134, 12414. (b) Li, C. ; Dong, T. ; Dian, L. Y. ; Zhang, W. D. ; Lei, X. G. Chem. Sci. 2013, 4, 1163. (c) Li, C. ; Lei, X. G. J. Org. Chem. 2014, 79, 3289. (d) Li, C. ; Dong, T. ; Li, Q. ; Lei, X. G. Angew. Chem. Int. Ed. 2014, 53, 12111.

    20. [20]

      Xia, D. L.; Du, Y.; Yi, Z.; Song, H.; Qin, Y. Chem. Eur. J. 2013, 19, 4423.  doi: 10.1002/chem.201204292

    21. [21]

      (a) Bohlmann, F. ; Ahmed, M. ; Jakupovic, J. ; King, R. M. ; Robinson, H. Phytochemistry 1983, 22, 191. (b) Bohlmann, F. ; Zdero, C. ; Hirschmann-Schmeda, G. ; Jakupovic, J. ; Dominguez, X. A. ; King, R. M. ; Robinson, H. Phytochemistry 1986, 25, 1175. (c) Wang, Y. ; Shen, Y. H. ; Jin, H. Z. ; Fu, J. J. ; Hu, X. J. ; Qin, J. J. ; Liu, J. H. ; Chen, M. ; Yan, S. K. ; Zhang, W. D. Org. Lett. 2008, 10, 5517.

    22. [22]

      (a) Chu, H. ; Smith, J. M. ; Felding, J. ; Baran, P. S. ACS Cent. Sci. 2017, 3, 47. For other related synthesis, see: (b) Oliver, S. F. ; Högenauer, K. ; Simic, O. ; Antonello, A. ; Smith, M. D. ; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5996. (c) Ball, M. ; Andrews, S. P. ; Wierschem, F. ; Cleator, E. ; Smith, M. D. ; Ley, S. V. Org. Lett. 2007, 9, 663. (d) Chen, D. Z. ; Evans, P. A. J. Am. Chem. Soc. 2017, 139, 6046.

    23. [23]

      (a) Rasmussen, U. ; Christensen, S. B. Acta Pharm. Suec. 1978, 15, 133. (b) Smitt, U. W. ; Christensen, S. B. Planta Med. 1991, 57, 196. (c) Liu, H. ; Jensen, K. G. ; Tran, L. M. ; Chen, M. ; Zhai, L. ; Olsen, C. E. ; Søhoel, H. ; Denmeade, S. R. ; Isaacs, J. T. ; Christensen, S. B. Phytochemistry 2006, 67, 2651.

    24. [24]

      Thastrup, O.; Cullen, P. J.; Drøbak, B. K.; Hanley, M. R.; Dawson, A. P. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 2466.  doi: 10.1073/pnas.87.7.2466

    25. [25]

      Hergenhahn, M.; Adolf, W.; Hecker, E. Tetrahedron Lett. 1975, 16, 1595.
       

    26. [26]

      Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976.  doi: 10.1021/ja972279y

    27. [27]

      Jackson, S. R.; Johnson, M. G.; Mikami, M.; Shiokawa, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2001, 40, 2694.  doi: 10.1002/(ISSN)1521-3773

    28. [28]

      Flekhter, O. B.; Nigmatullina, L. R.; Baltina, L. A.; Karachurina, L. T.; Galin, F. Z.; Zarudii, F. S.; Tolstikov, G. A.; Boreko, E. I.; Pavlova, N. I.; Nikolaeva, S. N.; Savinova, O. V. Pharm. Chem. J. 2002, 36, 484.  doi: 10.1023/A:1021844705853

    29. [29]

      Al-Dabbas, M. M.; Hashinaga, F.; Abdelgaleil, S. A. M.; Suganuma, K.; Akiyama, H. H. J. Ethnopharmacol. 2005, 97, 237.  doi: 10.1016/j.jep.2004.11.007

    30. [30]

      Shi, Y. S.; Liu, Y. B.; Ma, S. G.; Li, Y.; Qu, J.; Li, L.; Yuan, S. P.; Hou, Q.; Li, Y. H.; Jiang, J. D.; Yu, S. S. J. Nat. Prod. 2015, 78, 1526.  doi: 10.1021/np500951s

    31. [31]

      Li, D. L.; Zheng, X.; Chen, Y. C.; Jiang, S.; Zhang, Y.; Zhang, W. M.; Wang, H. Q.; Du, Z. Y.; Zhang, K. Arch. Pharm. Res. 2016, 39, 51.  doi: 10.1007/s12272-015-0655-y

    32. [32]

      Komaki, H.; Tanaka, Y.; Yazawa, K.; Takagi, H.; Ando, A.; Nagata, Y.; Mikami, Y. J. Antibiot. 2000, 53, 75.  doi: 10.7164/antibiotics.53.75

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    6. [6]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Dongcheng Liu Xiaokun Li Huancheng Hu Cunji Gao Qiong Hu Shuting Li Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072

    15. [15]

      Wei Yan Cailing Wang Li Wang Yonghai Song . Promoting the Reform of Basic Chemistry Experimental Courses through Laboratory Skill Competition. University Chemistry, 2024, 39(10): 189-194. doi: 10.3866/PKU.DXHX202403042

    16. [16]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    19. [19]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(152)
  • Abstract views(4573)
  • HTML views(1410)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return