Citation: Yang Baochao, Gao Shuanhu. Application of Photochemical Rearrangement of Santonin in Total Synthesis of Complex Natural Terpenoids[J]. Acta Chimica Sinica, ;2018, 76(3): 161-167. doi: 10.6023/A17120537 shu

Application of Photochemical Rearrangement of Santonin in Total Synthesis of Complex Natural Terpenoids

  • Corresponding author: Gao Shuanhu, shgao@chem.ecnu.edu.cn
  • Received Date: 11 December 2017
    Available Online: 26 March 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21422203, 21772044), the National Young Top-Notch Talent Support Program and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21772044the National Natural Science Foundation of China 21422203

Figures(7)

  • Terpenoids represent one of the largest and most diverse classes of secondary metabolites and widely exist in nature. Among them, sesquiterpene lactones are ubiquitous in a variety of medicinal plants, which are the main active ingredients of many traditional Chinese herbal medicines. However, it is extremely challenging to accomplish the total synthesis of these natural compounds. Photochemical rearrangement of santonin is an effective strategy to construct the guaianolide skeleton. Furthermore, as a renewable natural resource, santonin was extensively used in natural product total synthesis, especially complex terpenoids. In this review, a brief overview of application of photochemical rearrangement of santonin in total synthesis of natural terpenoids is presented, which mainly includes:(1) the synthesis of sesquiterpene and its oligomers, and (2) the core structure construction of some diterpenoids.
  • 加载中
    1. [1]

      Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.  doi: 10.1038/nchembio.2007.1

    2. [2]

      Zhang, D.; Xie, X.; Feng, J. S.; Wen, H. L. Chin. J. Org. Chem. 2016, 36, 202.
       

    3. [3]

      Zhou, W. S.; Huang, M. L. Acta Chim. Sinica 1956, 4, 73.
       

    4. [4]

    5. [5]

      Tang, P.; Wang, F. P. Chin. J. Org. Chem. 2013, 33, 458.
       

    6. [6]

    7. [7]

    8. [8]

      (a) Bach, T. ; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000. (b) Wan, C. Y. ; Deng, J. ; Liu, H. ; Bian, M. ; Li, A. Sci. China Chem. 2014, 57, 926. Recently Wang et al. achieve the total synthesis of (+)-Chinensiolide B from photochemical rearrangement of santonin, for details see: (c) Zhang, L. Q. ; Dai, X. L. ; Tao, L. Z. ; Xie, C. S. ; Zhang, M. ; Wang, M. Chin. J. Chem. 2017, 35, 1284.

    9. [9]

      Trommsdorff, H. Ann. Chem. Pharm. 1834, 11, 190.  doi: 10.1002/(ISSN)1099-0690

    10. [10]

      Barton, D. H. R.; de Mayo, P.; Shafiq, M. J. Chem. Soc. 1957, 929.

    11. [11]

      For selected examples, see: (a) White, E. H. ; Marx, J. N. J. Am. Chem. Soc. 1967, 89, 5511. (b) Marx, J. N. ; White, E. H. Tetrahedron 1969, 25, 2117. (c) Edgar, M. T. ; Greene, A. E. ; Crabbe, P. J. Org. Chem. 1979, 44, 159. (d) Greene, A. E. J. Am. Chem. Soc. 1980, 102, 5337. (e) Greene, A. E. ; Edgar, M. T. J. Org. Chem. 1989, 54, 1468. (f) Delair, P. ; Kann, N. ; Greene, A. E. J. Chem. Soc. Perkin Trans. 1 1994, 1651. (g) Sun, L. D. ; Tu, Y. Q. Tetrahedron Lett. 1998, 39, 7935. (h) Blay, G. ; Bargues, V. ; Cardona, L. ; Collado, A. M. ; García, B. ; Muñoz, M. C. ; Pedro, J. R. J. Org. Chem. 2000, 65, 2138. (i) Blay, G. ; Bargues, V. ; Cardona, L. ; García, B. ; Pedro, J. R. J. Org. Chem. 2000, 65, 6703. (j) Blay, G. ; Bargues, V. ; Cardona, L. ; García, B. ; Pedro, J. R. Tetrahedron 2001, 57, 9719. (k) Blay, G. ; Cardona, L. ; García, B. ; Lahoz, L. ; Pedro, J. R. J. Org. Chem. 2001, 66, 7700. (l) Xia, W. J. ; Li, D. R. ; Tu, Y. Q. Synth. Commun. 2001, 31, 1613. (m) Xia, W. J. ; Sun, L. D. ; Shi, L. ; Zhang, S. Y. ; Tu, Y. Q. Chin. J. Chem. 2004, 22, 377. (n) Makiyi, E. F. ; Frade, R. F. M. ; Lebl, T. ; Jaffray, E. G. ; Cobb, S. E. ; Harvey, A. L. ; Slawin, A. M. Z. ; Hay, R. T. ; Westwood, N. J. Eur. J. Org. Chem. 2009, 2009, 5711. (o) Dai, X. L. ; Tang, J. ; Zhang, L. Q. ; Tao, L. Z. ; Ouyang, Z. ; Wang, M. Chin. J. Org. Chem. 2015, 35, 2142. (戴笑丽, 汤建, 章凌琼, 陶连芝, 欧阳臻, 王民, 有机化学, 2015, 35, 2142. )

    12. [12]

      (a) Natarajan, A. ; Tsai, C. K. ; Khan, S. I. ; McCarren, P. ; Houk, K. N. ; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2007, 129, 9846. (b) Commins, P. ; Natarajan, A. ; Tsai, C. K. ; Khan, S. I. ; Nath, N. K. ; Naumov, P. ; Garcia-Garibay, M. A. Cryst. Growth Des. 2015, 15, 1983. (c) Chen, X. ; Tian, G. J. ; Rinkevicius, Z. ; Vahtras, O. ; Cao, Z. X. ; Ågren, H. ; Luo, Y. Chem. Phys. 2012, 405, 40. (d) Chen, X. ; Rinkevicius, Z. ; Luo, Y. ; Ågren, H. ; Cao, Z. X. ChemPhysChem 2012, 13, 353.

    13. [13]

      (a) Herout, V. ; Sorm, F. Collect. Czech. Chem. Commun. 1953, 18, 854. (b) Herout, V. ; Sorm, F. Collect. Czech. Chem. Commun. 1954, 19, 792. (c) Novotny, L. ; Herout, V. ; Sorm, F. Collect. Czech. Chem. Commun. 1960, 25, 1492 and references therein.

    14. [14]

      Zhang, W. H.; Luo, S. J.; Fang, F.; Chen, Q. S.; Hu, H. W.; Jia, X. S.; Zhai, H. B. J. Am. Chem. Soc. 2005, 127, 18.  doi: 10.1021/ja0439219

    15. [15]

      Vokac, K.; Samek, Z.; Herout, V.; Sorm, F. Tetrahedron Lett. 1968, 9, 3855.  doi: 10.1016/S0040-4039(01)99119-1

    16. [16]

      Li, C.; Yu, X. L.; Lei, X. G. Org. Lett. 2010, 12, 4284.  doi: 10.1021/ol101705j

    17. [17]

      Wu, Z. J.; Xu, X. K.; Shen, Y. H.; Su, J.; Tian, J. M.; Liang, S.; Li, H. L.; Liu, R. H.; Zhang, W. D. Org. Lett. 2008, 10, 2397.  doi: 10.1021/ol800656q

    18. [18]

      Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.  doi: 10.1021/cr068373r

    19. [19]

      (a) Li, C. ; Dian, L. Y. ; Zhang, W. D. ; Lei, X. G. J. Am. Chem. Soc. 2012, 134, 12414. (b) Li, C. ; Dong, T. ; Dian, L. Y. ; Zhang, W. D. ; Lei, X. G. Chem. Sci. 2013, 4, 1163. (c) Li, C. ; Lei, X. G. J. Org. Chem. 2014, 79, 3289. (d) Li, C. ; Dong, T. ; Li, Q. ; Lei, X. G. Angew. Chem. Int. Ed. 2014, 53, 12111.

    20. [20]

      Xia, D. L.; Du, Y.; Yi, Z.; Song, H.; Qin, Y. Chem. Eur. J. 2013, 19, 4423.  doi: 10.1002/chem.201204292

    21. [21]

      (a) Bohlmann, F. ; Ahmed, M. ; Jakupovic, J. ; King, R. M. ; Robinson, H. Phytochemistry 1983, 22, 191. (b) Bohlmann, F. ; Zdero, C. ; Hirschmann-Schmeda, G. ; Jakupovic, J. ; Dominguez, X. A. ; King, R. M. ; Robinson, H. Phytochemistry 1986, 25, 1175. (c) Wang, Y. ; Shen, Y. H. ; Jin, H. Z. ; Fu, J. J. ; Hu, X. J. ; Qin, J. J. ; Liu, J. H. ; Chen, M. ; Yan, S. K. ; Zhang, W. D. Org. Lett. 2008, 10, 5517.

    22. [22]

      (a) Chu, H. ; Smith, J. M. ; Felding, J. ; Baran, P. S. ACS Cent. Sci. 2017, 3, 47. For other related synthesis, see: (b) Oliver, S. F. ; Högenauer, K. ; Simic, O. ; Antonello, A. ; Smith, M. D. ; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5996. (c) Ball, M. ; Andrews, S. P. ; Wierschem, F. ; Cleator, E. ; Smith, M. D. ; Ley, S. V. Org. Lett. 2007, 9, 663. (d) Chen, D. Z. ; Evans, P. A. J. Am. Chem. Soc. 2017, 139, 6046.

    23. [23]

      (a) Rasmussen, U. ; Christensen, S. B. Acta Pharm. Suec. 1978, 15, 133. (b) Smitt, U. W. ; Christensen, S. B. Planta Med. 1991, 57, 196. (c) Liu, H. ; Jensen, K. G. ; Tran, L. M. ; Chen, M. ; Zhai, L. ; Olsen, C. E. ; Søhoel, H. ; Denmeade, S. R. ; Isaacs, J. T. ; Christensen, S. B. Phytochemistry 2006, 67, 2651.

    24. [24]

      Thastrup, O.; Cullen, P. J.; Drøbak, B. K.; Hanley, M. R.; Dawson, A. P. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 2466.  doi: 10.1073/pnas.87.7.2466

    25. [25]

      Hergenhahn, M.; Adolf, W.; Hecker, E. Tetrahedron Lett. 1975, 16, 1595.
       

    26. [26]

      Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976.  doi: 10.1021/ja972279y

    27. [27]

      Jackson, S. R.; Johnson, M. G.; Mikami, M.; Shiokawa, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2001, 40, 2694.  doi: 10.1002/(ISSN)1521-3773

    28. [28]

      Flekhter, O. B.; Nigmatullina, L. R.; Baltina, L. A.; Karachurina, L. T.; Galin, F. Z.; Zarudii, F. S.; Tolstikov, G. A.; Boreko, E. I.; Pavlova, N. I.; Nikolaeva, S. N.; Savinova, O. V. Pharm. Chem. J. 2002, 36, 484.  doi: 10.1023/A:1021844705853

    29. [29]

      Al-Dabbas, M. M.; Hashinaga, F.; Abdelgaleil, S. A. M.; Suganuma, K.; Akiyama, H. H. J. Ethnopharmacol. 2005, 97, 237.  doi: 10.1016/j.jep.2004.11.007

    30. [30]

      Shi, Y. S.; Liu, Y. B.; Ma, S. G.; Li, Y.; Qu, J.; Li, L.; Yuan, S. P.; Hou, Q.; Li, Y. H.; Jiang, J. D.; Yu, S. S. J. Nat. Prod. 2015, 78, 1526.  doi: 10.1021/np500951s

    31. [31]

      Li, D. L.; Zheng, X.; Chen, Y. C.; Jiang, S.; Zhang, Y.; Zhang, W. M.; Wang, H. Q.; Du, Z. Y.; Zhang, K. Arch. Pharm. Res. 2016, 39, 51.  doi: 10.1007/s12272-015-0655-y

    32. [32]

      Komaki, H.; Tanaka, Y.; Yazawa, K.; Takagi, H.; Ando, A.; Nagata, Y.; Mikami, Y. J. Antibiot. 2000, 53, 75.  doi: 10.7164/antibiotics.53.75

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(151)
  • Abstract views(4441)
  • HTML views(1405)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return