Citation: Duan Yu, Chen Xin, Shao Zhengzhong. Preparation and Properties of Antheraea pernyi/Bombyx mori Silk Fibroin Blending Scaffold[J]. Acta Chimica Sinica, ;2018, 76(3): 190-195. doi: 10.6023/A17110511 shu

Preparation and Properties of Antheraea pernyi/Bombyx mori Silk Fibroin Blending Scaffold

  • Corresponding author: Shao Zhengzhong, zzshao@fudan.edu.cn
  • Received Date: 28 November 2017
    Available Online: 29 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21574024)the National Natural Science Foundation of China 21574024

Figures(6)

  • Lots of research has indicated that materials contain Arg-Gly-Asp (RGD) sequence can promote cell attachment and proliferation on them. Although Antheraea pernyi silk fibroin is a natural structural protein which contains RGD sequence, there are few studies on this kind of protein materials, for the regeneration of Antheraea pernyi silk fibroin from silk fibers is complicated and it is hard to be processed. In this paper, we present a water-insoluble Antheraea pernyi/Bombyx mori silk fibroin blending scaffold. The regenerated Antheraea pernyi silk fibroin (RASF) solution was prepared by dissolving degummed silk fibers at 100℃ and dialyzing at 4℃. The regenerated Bombyx mori silk fibroin (RBSF) solution was prepared by dissolving degummed silk fibers at 60℃ and dialyzing at 20℃. Regenerated silk fibroin solution was concentrated to 6 wt% solution in 10 wt% PEG solution. Based on RASF and RBSF solution, RBSF porous scaffold and RASF/RBSF blending scaffolds with different ratios were prepared through treating 1-butanol/SF solution under freezing at -20℃. The volume ratio of 1-butanol to solution was 1:2. RASF porous scaffold was not hard enough to hold itself, therefore the maximum content of RASF in blending scaffold was 70 wt%. With increasing of RASF content, pore sizes of scaffolds decreased from 250 μm to 150 μm and compressive strengths decreased from 280 kPa to 108 kPa, while the thermal stabilities increased. FTIR results demonstrated that the molecular conformation of silk fibroin was proven to be β-sheet, β-turn and α-helix. The biocompatibilities of scaffolds were demonstrated with in vitro cell culture. The results showed that L929 fibroblast and MC3t3-E1 osteoblast adhered, proliferated and migrated well into the scaffolds. The speed of cell proliferation accelerated with the increase of RASF content. Obviously, these regenerated silk fibroin scaffolds with good bio-compatibility could be used in tissue engineering field further.
  • 加载中
    1. [1]

      For a recent review: (a) Whang, K. ; Thomas, C. ; Healy, K. ; Nuber, G. Polymer 1995, 36, 837; (b) Kim, H. J. ; Kim, U. J. ; Kim, H. S. ; Li, C. ; Wada, M. ; Leisk, G. G. ; Kaplan, D. L. Bone 2008, 42, 1226; (c) Melke, J. ; Midha, S. ; Ghosh, S. ; Ito, K. ; Hofmann, S. Acta Biomater. 2016, 31, 1.

    2. [2]

      For a recent review: (a) Ma, Z. ; Kotaki, M. ; Inai, R. ; Ramakrishna, S. Tissue. Eng. 2005, 11, 101; (b) Kalaf, E. A. G. ; Flores, R. ; Bledsoe, J. G. ; Sell, S. A. Mater. Sci. Eng. C 2016, 63, 198; (c) Bhardwaj, N. ; Singh, Y. P. ; Devi, D. ; Kandimalla, R. ; Kotoky, J. ; Mandal, B. B. J. Mater. Chem. B 2016, 4, 3670.

    3. [3]

      Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Biomaterials 2003, 24, 401.  doi: 10.1016/S0142-9612(02)00353-8

    4. [4]

      Unger, R. E.; Ghanaati, S.; Orth, C.; Sartoris, A.; Barbeck, M.; Halstenberg, S.; Motta, A.; Migliaresi, C.; Kirkpatrick, C. J. Biomaterials 2010, 31, 6959.  doi: 10.1016/j.biomaterials.2010.05.057

    5. [5]

      Mandal, B. B.; Grinberg, A.; Gil, E. S.; Panilaitis, B.; Kaplan, D. L. PNAS 2012, 109, 7699.  doi: 10.1073/pnas.1119474109

    6. [6]

      Minoura, N.; Aiba, S. I.; Higuchi, M.; Gotoh, Y.; Tsukada, M.; Imai, Y. Biochem. Biophys. Res. Commun. 1995, 208, 511.  doi: 10.1006/bbrc.1995.1368

    7. [7]

      (a) Kroese-Deutman, H. ; Den Dolder, J. V. ; Spauwen, P. ; Jansen, J. Tissue. Eng. 2005, 11, 1867; (b) Oya, K. ; Tanaka, Y. ; Saito, H. ; Kurashima, K. ; Nogi, K. ; Tsutsumi, H. ; Tsutsumi, Y. ; Doi, H. ; Nomura, N. ; Hanawa, T. Biomaterials 2009, 30, 1281.

    8. [8]

      Li, M.; Tao, W.; Lu, S.; Zhao, C. Polym. Adv. Technol. 2008, 19, 207.  doi: 10.1002/(ISSN)1099-1581

    9. [9]

      Cao, Z.-B.; Wen, J.-C.; Yao, J.-R.; Chen, X.; Ni, Y.; Shao, Z.-Z. Mater. Sci. Eng. C 2013, 33, 3522.  doi: 10.1016/j.msec.2013.04.045

    10. [10]

      Zhang, F.; Zuo, B.-Q.; Zhang, H.-X.; Bai, L. Polymer 2009, 50, 279.  doi: 10.1016/j.polymer.2008.10.053

    11. [11]

      Wang, Q.; Chen, Q.; Yang, Y.-H.; Shao, Z.-Z. Biomacromolecules 2012, 14, 285.
       

    12. [12]

      (a) Madihally, S. V. ; Matthew, H. W. Biomaterials 1999, 20, 1133; (b) Hollister, S. J. Nat. Mater. 2005, 4, 518.

    13. [13]

      (a) Freddi, G. ; Monti, P. ; Nagura, M. ; Gotoh, Y. ; Tsukada, M. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 841; (b) Chen, X. ; Shao, Z. -Z. ; Marinkovic, N. S. ; Miller, L. M. ; Zhou, P. ; Chance, M. R. Biophys. Chem. 2001, 89, 25.

    14. [14]

      Chen, X.; Knight, D. P.; Shao, Z.-Z. Soft Matter 2009, 5, 2777.  doi: 10.1039/b900908f

    15. [15]

      Yu, Q.; Zhou, J.; Fung, Y. C. Am. J. Physiol. 1993, 265, 52.

    16. [16]

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(9)
  • Abstract views(1207)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return