Citation: Duan Yu, Chen Xin, Shao Zhengzhong. Preparation and Properties of Antheraea pernyi/Bombyx mori Silk Fibroin Blending Scaffold[J]. Acta Chimica Sinica, ;2018, 76(3): 190-195. doi: 10.6023/A17110511 shu

Preparation and Properties of Antheraea pernyi/Bombyx mori Silk Fibroin Blending Scaffold

  • Corresponding author: Shao Zhengzhong, zzshao@fudan.edu.cn
  • Received Date: 28 November 2017
    Available Online: 29 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21574024)the National Natural Science Foundation of China 21574024

Figures(6)

  • Lots of research has indicated that materials contain Arg-Gly-Asp (RGD) sequence can promote cell attachment and proliferation on them. Although Antheraea pernyi silk fibroin is a natural structural protein which contains RGD sequence, there are few studies on this kind of protein materials, for the regeneration of Antheraea pernyi silk fibroin from silk fibers is complicated and it is hard to be processed. In this paper, we present a water-insoluble Antheraea pernyi/Bombyx mori silk fibroin blending scaffold. The regenerated Antheraea pernyi silk fibroin (RASF) solution was prepared by dissolving degummed silk fibers at 100℃ and dialyzing at 4℃. The regenerated Bombyx mori silk fibroin (RBSF) solution was prepared by dissolving degummed silk fibers at 60℃ and dialyzing at 20℃. Regenerated silk fibroin solution was concentrated to 6 wt% solution in 10 wt% PEG solution. Based on RASF and RBSF solution, RBSF porous scaffold and RASF/RBSF blending scaffolds with different ratios were prepared through treating 1-butanol/SF solution under freezing at -20℃. The volume ratio of 1-butanol to solution was 1:2. RASF porous scaffold was not hard enough to hold itself, therefore the maximum content of RASF in blending scaffold was 70 wt%. With increasing of RASF content, pore sizes of scaffolds decreased from 250 μm to 150 μm and compressive strengths decreased from 280 kPa to 108 kPa, while the thermal stabilities increased. FTIR results demonstrated that the molecular conformation of silk fibroin was proven to be β-sheet, β-turn and α-helix. The biocompatibilities of scaffolds were demonstrated with in vitro cell culture. The results showed that L929 fibroblast and MC3t3-E1 osteoblast adhered, proliferated and migrated well into the scaffolds. The speed of cell proliferation accelerated with the increase of RASF content. Obviously, these regenerated silk fibroin scaffolds with good bio-compatibility could be used in tissue engineering field further.
  • 加载中
    1. [1]

      For a recent review: (a) Whang, K. ; Thomas, C. ; Healy, K. ; Nuber, G. Polymer 1995, 36, 837; (b) Kim, H. J. ; Kim, U. J. ; Kim, H. S. ; Li, C. ; Wada, M. ; Leisk, G. G. ; Kaplan, D. L. Bone 2008, 42, 1226; (c) Melke, J. ; Midha, S. ; Ghosh, S. ; Ito, K. ; Hofmann, S. Acta Biomater. 2016, 31, 1.

    2. [2]

      For a recent review: (a) Ma, Z. ; Kotaki, M. ; Inai, R. ; Ramakrishna, S. Tissue. Eng. 2005, 11, 101; (b) Kalaf, E. A. G. ; Flores, R. ; Bledsoe, J. G. ; Sell, S. A. Mater. Sci. Eng. C 2016, 63, 198; (c) Bhardwaj, N. ; Singh, Y. P. ; Devi, D. ; Kandimalla, R. ; Kotoky, J. ; Mandal, B. B. J. Mater. Chem. B 2016, 4, 3670.

    3. [3]

      Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Biomaterials 2003, 24, 401.  doi: 10.1016/S0142-9612(02)00353-8

    4. [4]

      Unger, R. E.; Ghanaati, S.; Orth, C.; Sartoris, A.; Barbeck, M.; Halstenberg, S.; Motta, A.; Migliaresi, C.; Kirkpatrick, C. J. Biomaterials 2010, 31, 6959.  doi: 10.1016/j.biomaterials.2010.05.057

    5. [5]

      Mandal, B. B.; Grinberg, A.; Gil, E. S.; Panilaitis, B.; Kaplan, D. L. PNAS 2012, 109, 7699.  doi: 10.1073/pnas.1119474109

    6. [6]

      Minoura, N.; Aiba, S. I.; Higuchi, M.; Gotoh, Y.; Tsukada, M.; Imai, Y. Biochem. Biophys. Res. Commun. 1995, 208, 511.  doi: 10.1006/bbrc.1995.1368

    7. [7]

      (a) Kroese-Deutman, H. ; Den Dolder, J. V. ; Spauwen, P. ; Jansen, J. Tissue. Eng. 2005, 11, 1867; (b) Oya, K. ; Tanaka, Y. ; Saito, H. ; Kurashima, K. ; Nogi, K. ; Tsutsumi, H. ; Tsutsumi, Y. ; Doi, H. ; Nomura, N. ; Hanawa, T. Biomaterials 2009, 30, 1281.

    8. [8]

      Li, M.; Tao, W.; Lu, S.; Zhao, C. Polym. Adv. Technol. 2008, 19, 207.  doi: 10.1002/(ISSN)1099-1581

    9. [9]

      Cao, Z.-B.; Wen, J.-C.; Yao, J.-R.; Chen, X.; Ni, Y.; Shao, Z.-Z. Mater. Sci. Eng. C 2013, 33, 3522.  doi: 10.1016/j.msec.2013.04.045

    10. [10]

      Zhang, F.; Zuo, B.-Q.; Zhang, H.-X.; Bai, L. Polymer 2009, 50, 279.  doi: 10.1016/j.polymer.2008.10.053

    11. [11]

      Wang, Q.; Chen, Q.; Yang, Y.-H.; Shao, Z.-Z. Biomacromolecules 2012, 14, 285.
       

    12. [12]

      (a) Madihally, S. V. ; Matthew, H. W. Biomaterials 1999, 20, 1133; (b) Hollister, S. J. Nat. Mater. 2005, 4, 518.

    13. [13]

      (a) Freddi, G. ; Monti, P. ; Nagura, M. ; Gotoh, Y. ; Tsukada, M. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 841; (b) Chen, X. ; Shao, Z. -Z. ; Marinkovic, N. S. ; Miller, L. M. ; Zhou, P. ; Chance, M. R. Biophys. Chem. 2001, 89, 25.

    14. [14]

      Chen, X.; Knight, D. P.; Shao, Z.-Z. Soft Matter 2009, 5, 2777.  doi: 10.1039/b900908f

    15. [15]

      Yu, Q.; Zhou, J.; Fung, Y. C. Am. J. Physiol. 1993, 265, 52.

    16. [16]

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    6. [6]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    9. [9]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(10)
  • Abstract views(1301)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return