Citation: Guo Ni, Wang Bin, Liu Fengyi. Theoretical Design and Mechanistic Study on a Light-Driven Molecular Rotary Motor with B=N Axis[J]. Acta Chimica Sinica, ;2018, 76(3): 196-201. doi: 10.6023/A17110509 shu

Theoretical Design and Mechanistic Study on a Light-Driven Molecular Rotary Motor with B=N Axis

  • Corresponding author: Liu Fengyi, fengyiliu@snnu.edu.cn
  • Received Date: 27 November 2017
    Available Online: 22 March 2018

    Fund Project: the National Natural Science Foundation of China 21473107the National Natural Science Foundation of China 21636006Project supported by the National Natural Science Foundation of China (Nos. 21473107, 21636006) and Fundamental Research Funds for the Central Universities (No. GK201502002)Fundamental Research Funds for the Central Universities GK201502002

Figures(5)

  • Light-driven molecular motors have attracted overwhelming attention due to their potential applications in a wide range of fields. Despite of the great successes obtained in alkene-based light-driven molecular motors and switches, scientists pursuing high-efficient alternatives with superior working mechanisms have never suspended. In this report, a promising model of light-driven rotary motor, namely BN-stilbene motor, constructed by replacing the central C=C axis of a CC-stilbene rotary motor with a polar B=N bond, was rationally designed. Multireference Complete Active Space Self-Consistent Field (CASSCF) method and Time-Dependent Density Functional (TDDFT) theory were applied to study the mechanism of BN-stilbene, along with the Complete Active Space Second-Order Perturbation Theory (CASPT2) energy corrections. Our calculations show that the B=N axis well preserves the conjugation of between the rotor and stator, leading to four ground-state helical conformers (i.e., cis-stable, trans-unstable, trans-stable and cis-unstable), whose geometries and energies are in line with their counterparts in CC-stilbene motor; in addition, BN-stilbene has similar absorption spectra and more slopped excited-state potential energy curves at Franck-Condon region, which can fascinate a spontaneous rotary motion around B=N axis, thus generates directional photo-induced isomerization from cis-stable to trans-unstable (or from trans-stable to cis-unstable). Moreover, the barriers for helical inversions (trans-unstable → trans-stable or cis-unstable → cis-stable) are found to be lower than those of the reversed thermal rotations (i.e., cis-stable → trans-unstable and trans-stable → cis-unstable), which further insures the unidirectionality of rotation. These features sufficiently allow BN-stilbene to serve as a candidate for light-driven molecular rotary motor. Finally and most importantly, as compared with that of CC-stilbene, the photoisomerization mechanism of BN-stilbene motor shows advantages in nonadiabatic transition:Due to the introducing of polar B=N axis, the S1/S0 conical intersections of BN system are both geometrically and energetically closer to the excited-state intermediate, which is thus expected to improve the nonadiabatic transition probabilities and the unidirectionality of the rotation. Therefore, the BN-stilbene motor is expected to perform a unidirectional, repetitive 360° rotation upon sequential applying of photo and thermal inputs. The findings suggest BN-hetero stilbene as a promising type of light-driven rotary motor and may inspire the design and synthesis of novel molecular motors.
  • 加载中
    1. [1]

      Stock, A.; Pohland, E. Eur. J. Inorg. Chem. 1926, 59, 2215.
       

    2. [2]

      Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 3073.

    3. [3]

      Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955.  doi: 10.1021/jp065085q

    4. [4]

      Campbell, P. G.; Marwitz, A. J. V.; Liu, S. Y. Angew. Chem. Int. Ed. 2012, 51, 6074.  doi: 10.1002/anie.201200063

    5. [5]

      Abbey, E. R.; Zakharov, L. N.; Liu, S. Y. J. Am. Chem. Soc. 2011, 133, 11508.  doi: 10.1021/ja205779b

    6. [6]

      Knack, D. H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec, M.; Liu, S. Y.; Heider, J. Angew. Chem. Int. Ed. 2013, 52, 2599.  doi: 10.1002/anie.v52.9

    7. [7]

      Edel, K.; Brough, S. A.; Lamm, A. N.; Liu, S. Y.; Bettinger, H. F. Angew. Chem. Int. Ed. 2015, 54, 7819.  doi: 10.1002/anie.201502967

    8. [8]

      Wang, X. Y.; Zhuang, F. D.; Wang, R. B.; Wang, X. C.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2014, 136, 3764.  doi: 10.1021/ja500117z

    9. [9]

      Yang, D. T.; Mellerup, S. K.; Peng, J. B.; Wang, X.; Li, Q. S.; Wang, S. J. Am. Chem. Soc. 2016, 138, 11513.  doi: 10.1021/jacs.6b07899

    10. [10]

      Shi, Y.; Wang, X.; Wang, N.; Peng, T.; Wang, S. Organometallics 2017, 36, 2677.  doi: 10.1021/acs.organomet.7b00290

    11. [11]

      Yang, D. T.; Shi, Y.; Peng, T.; Wang, S. Organometallics 2017, 36, 2654.  doi: 10.1021/acs.organomet.7b00261

    12. [12]

      Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.  doi: 10.1039/B715652A

    13. [13]

      van Delden, R. A.; Koumura, N.; Harada, N.; Feringa, B. L. Proc. Natl. Acad. Sci. 2002, 99, 4945.  doi: 10.1073/pnas.062660699

    14. [14]

      van Delden, R. A.; ter Wiel, M. K. J.; Pollard, M. M.; Vicario, J.; Koumura, N.; Feringa, B. L. Nature 2005, 437, 1337.  doi: 10.1038/nature04127

    15. [15]

      Wang, J.; Feringa, B. L. Science 2011, 331, 1429.  doi: 10.1126/science.1199844

    16. [16]

      Chiang, P. T.; Mieke, J.; Godoy, J.; Guerrero, J. M.; Alemany, L. B.; Villagómez, C. J.; Saywell, A.; Grill, L.; Tour, J. M. ACS Nano 2012, 6, 592.  doi: 10.1021/nn203969b

    17. [17]

      Chen, K. Y.; Ivashenko, O.; Carroll, G. T.; Robertus, J.; Kistemaker, J. C. M.; London, G.; Browne, W. R.; Rudolf, P.; Feringa, B. L. J. Am. Chem. Soc. 2014, 136, 3219.  doi: 10.1021/ja412110t

    18. [18]

      van Dijken, D. J.; Chen, J.; Stuart, M. C. A.; Hou, L.; Feringa, B. L. J. Am. Chem. Soc. 2016, 138, 660.  doi: 10.1021/jacs.5b11318

    19. [19]

      Kazaryan, A.; Filatov, M. J. Phys. Chem. A 2009, 113, 11630.  doi: 10.1021/jp902389j

    20. [20]

      Torras, J.; Rodriguez-Ropero, F.; Bertran, O.; Alemán, C. J. Phys. Chem. C 2009, 113, 3574.  doi: 10.1021/jp809495b

    21. [21]

      Pérez-Hernández, G.; González, L. Phys. Chem. Chem. Phys. 2010, 12, 12279.  doi: 10.1039/c0cp00324g

    22. [22]

      Cnossen, A.; Kistemaker, J. C. M.; Kojima, T.; Feringa, B. L. J. Org. Chem. 2014, 79, 927.  doi: 10.1021/jo402301j

    23. [23]

      Li, Y.; Liu, F.; Wang, B.; Su, Q.; Wang, W.; Morokuma, K. J. Chem. Phys. 2016, 145, 244311.

    24. [24]

      Liu, F.; Morokuma, K. J. Am. Chem. Soc. 2012, 134, 4864.  doi: 10.1021/ja211441n

    25. [25]

      Lorenz, T.; Crumbach, M.; Eckert, T.; Lik, A.; Helten, H. Angew. Chem. Int. Ed. 2017, 56, 2780.  doi: 10.1002/anie.201612476

    26. [26]

      Krausbeck, F.; Mendive-Tapia, D.; Thom, A. J. W.; Bearpark, M. J. Comput. Theor. Chem. 2014, 1040-1041, 14.

    27. [27]

      Malmqvist, P. A.; Roos, B. O.; Schimmelpfennig, B. Chem. Phys. Lett. 2002, 357, 230.  doi: 10.1016/S0009-2614(02)00498-0

    28. [28]

      Kerridge, A. Phys. Chem. Chem. Phys. 2013, 15, 2197.  doi: 10.1039/c2cp43982d

    29. [29]

      Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.  doi: 10.1021/ar700111a

    30. [30]

      Levine, B. G.; Ko, C.; Quenneville, J.; Martinez, T. J. Mol. Phys. 2006, 104, 1039.  doi: 10.1080/00268970500417762

    31. [31]

      Levine, B. G.; Coe, J. D.; Martínez, T. J. J. Phys. Chem. B 2008, 112, 405.  doi: 10.1021/jp0761618

    32. [32]

      Maeda, S.; Ohno, K.; Morokuma, K. J. Chem. Theor. Comput. 2010, 6, 1538.  doi: 10.1021/ct1000268

    33. [33]

      Andersson, K.; Malmqvist, P. A.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218.  doi: 10.1063/1.462209

    34. [34]

      Finley, J.; Malmqvist, P. A.; Roos, B. O.; Serrano-Andres, L. Chem. Phys. Lett. 1998, 288, 299.  doi: 10.1016/S0009-2614(98)00252-8

    35. [35]

      Andersson, K. Theor. Chem. Acc. 1995, 91, 31.  doi: 10.1007/BF01113860

    36. [36]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Montgomery, J. A. ; Vreven, T. ; Kudin, K. N. ; Burant, J. C. ; Millam, J. M. ; Iyengar, S. S. ; Tomasi, J. ; Barone, V. ; Mennucci, B. ; Cossi, M. ; Scalmani, G. ; Rega, N. ; Petersson, G. A. ; Nakatsuji, H. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Klene, M. ; Li, X. ; Knox, J. E. ; Hratchian, H. P. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Ayala, P. Y. ; Morokuma, K. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Zakrzewski, V. G. ; Dapprich, S. ; Daniels, A. D. ; Strain, M. C. ; Farkas, O. ; Malick, D. K. ; Rabuck, A. D. ; Raghavachari, K. ; Foresman, J. B. ; Ortiz, J. V. ; Cui, Q. ; Baboul, A. G. ; Clifford, S. ; Cioslowski, J. ; Stefanov, B. B. ; Liu, G. ; Liashenko, A. ; Piskorz, P. ; Komaromi, I. ; Martin, R. L. ; Fox, D. J. ; Keith, T. ; Al-Laham, M. A. ; Peng, C. Y. ; Nanayakkara, A. ; Challacombe, M. ; Gill, P. M. W. ; Johnson, B. ; Chen, W. ; Wong, M. W. ; Gonzalez, C. ; Pople, J. A. Gaussian 09, Revision A. 02, Gaussian, Inc, 2009.

    37. [37]

      Karlström, G.; Lindh, R.; Malmqvist, P. A.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P. O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo, L. Comput. Mater. Sci. 2003, 28, 222.  doi: 10.1016/S0927-0256(03)00109-5

    38. [38]

      Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P. A.; Neogrády, P.; Pedersen, T. B.; Pitonak, M.; Reiher, M.; Roos, B. O.; Serrano-andres, L.; Urban, M.; Veryazov, V.; Lindh, R. J. Comput. Chem. 2010, 31, 224.  doi: 10.1002/jcc.v31:1

    39. [39]

      Kistemaker, J. C. M.; Pizzolato, S. F.; van Leeuwen, T.; Pijper, T. C.; Feringa, B. L. Chem. Eur. J. 2016, 22, 13478.  doi: 10.1002/chem.201602276

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(12)
  • Abstract views(990)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return