Citation: Guo Ni, Wang Bin, Liu Fengyi. Theoretical Design and Mechanistic Study on a Light-Driven Molecular Rotary Motor with B=N Axis[J]. Acta Chimica Sinica, ;2018, 76(3): 196-201. doi: 10.6023/A17110509 shu

Theoretical Design and Mechanistic Study on a Light-Driven Molecular Rotary Motor with B=N Axis

  • Corresponding author: Liu Fengyi, fengyiliu@snnu.edu.cn
  • Received Date: 27 November 2017
    Available Online: 22 March 2018

    Fund Project: the National Natural Science Foundation of China 21473107the National Natural Science Foundation of China 21636006Project supported by the National Natural Science Foundation of China (Nos. 21473107, 21636006) and Fundamental Research Funds for the Central Universities (No. GK201502002)Fundamental Research Funds for the Central Universities GK201502002

Figures(5)

  • Light-driven molecular motors have attracted overwhelming attention due to their potential applications in a wide range of fields. Despite of the great successes obtained in alkene-based light-driven molecular motors and switches, scientists pursuing high-efficient alternatives with superior working mechanisms have never suspended. In this report, a promising model of light-driven rotary motor, namely BN-stilbene motor, constructed by replacing the central C=C axis of a CC-stilbene rotary motor with a polar B=N bond, was rationally designed. Multireference Complete Active Space Self-Consistent Field (CASSCF) method and Time-Dependent Density Functional (TDDFT) theory were applied to study the mechanism of BN-stilbene, along with the Complete Active Space Second-Order Perturbation Theory (CASPT2) energy corrections. Our calculations show that the B=N axis well preserves the conjugation of between the rotor and stator, leading to four ground-state helical conformers (i.e., cis-stable, trans-unstable, trans-stable and cis-unstable), whose geometries and energies are in line with their counterparts in CC-stilbene motor; in addition, BN-stilbene has similar absorption spectra and more slopped excited-state potential energy curves at Franck-Condon region, which can fascinate a spontaneous rotary motion around B=N axis, thus generates directional photo-induced isomerization from cis-stable to trans-unstable (or from trans-stable to cis-unstable). Moreover, the barriers for helical inversions (trans-unstable → trans-stable or cis-unstable → cis-stable) are found to be lower than those of the reversed thermal rotations (i.e., cis-stable → trans-unstable and trans-stable → cis-unstable), which further insures the unidirectionality of rotation. These features sufficiently allow BN-stilbene to serve as a candidate for light-driven molecular rotary motor. Finally and most importantly, as compared with that of CC-stilbene, the photoisomerization mechanism of BN-stilbene motor shows advantages in nonadiabatic transition:Due to the introducing of polar B=N axis, the S1/S0 conical intersections of BN system are both geometrically and energetically closer to the excited-state intermediate, which is thus expected to improve the nonadiabatic transition probabilities and the unidirectionality of the rotation. Therefore, the BN-stilbene motor is expected to perform a unidirectional, repetitive 360° rotation upon sequential applying of photo and thermal inputs. The findings suggest BN-hetero stilbene as a promising type of light-driven rotary motor and may inspire the design and synthesis of novel molecular motors.
  • 加载中
    1. [1]

      Stock, A.; Pohland, E. Eur. J. Inorg. Chem. 1926, 59, 2215.
       

    2. [2]

      Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 3073.

    3. [3]

      Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955.  doi: 10.1021/jp065085q

    4. [4]

      Campbell, P. G.; Marwitz, A. J. V.; Liu, S. Y. Angew. Chem. Int. Ed. 2012, 51, 6074.  doi: 10.1002/anie.201200063

    5. [5]

      Abbey, E. R.; Zakharov, L. N.; Liu, S. Y. J. Am. Chem. Soc. 2011, 133, 11508.  doi: 10.1021/ja205779b

    6. [6]

      Knack, D. H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec, M.; Liu, S. Y.; Heider, J. Angew. Chem. Int. Ed. 2013, 52, 2599.  doi: 10.1002/anie.v52.9

    7. [7]

      Edel, K.; Brough, S. A.; Lamm, A. N.; Liu, S. Y.; Bettinger, H. F. Angew. Chem. Int. Ed. 2015, 54, 7819.  doi: 10.1002/anie.201502967

    8. [8]

      Wang, X. Y.; Zhuang, F. D.; Wang, R. B.; Wang, X. C.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2014, 136, 3764.  doi: 10.1021/ja500117z

    9. [9]

      Yang, D. T.; Mellerup, S. K.; Peng, J. B.; Wang, X.; Li, Q. S.; Wang, S. J. Am. Chem. Soc. 2016, 138, 11513.  doi: 10.1021/jacs.6b07899

    10. [10]

      Shi, Y.; Wang, X.; Wang, N.; Peng, T.; Wang, S. Organometallics 2017, 36, 2677.  doi: 10.1021/acs.organomet.7b00290

    11. [11]

      Yang, D. T.; Shi, Y.; Peng, T.; Wang, S. Organometallics 2017, 36, 2654.  doi: 10.1021/acs.organomet.7b00261

    12. [12]

      Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.  doi: 10.1039/B715652A

    13. [13]

      van Delden, R. A.; Koumura, N.; Harada, N.; Feringa, B. L. Proc. Natl. Acad. Sci. 2002, 99, 4945.  doi: 10.1073/pnas.062660699

    14. [14]

      van Delden, R. A.; ter Wiel, M. K. J.; Pollard, M. M.; Vicario, J.; Koumura, N.; Feringa, B. L. Nature 2005, 437, 1337.  doi: 10.1038/nature04127

    15. [15]

      Wang, J.; Feringa, B. L. Science 2011, 331, 1429.  doi: 10.1126/science.1199844

    16. [16]

      Chiang, P. T.; Mieke, J.; Godoy, J.; Guerrero, J. M.; Alemany, L. B.; Villagómez, C. J.; Saywell, A.; Grill, L.; Tour, J. M. ACS Nano 2012, 6, 592.  doi: 10.1021/nn203969b

    17. [17]

      Chen, K. Y.; Ivashenko, O.; Carroll, G. T.; Robertus, J.; Kistemaker, J. C. M.; London, G.; Browne, W. R.; Rudolf, P.; Feringa, B. L. J. Am. Chem. Soc. 2014, 136, 3219.  doi: 10.1021/ja412110t

    18. [18]

      van Dijken, D. J.; Chen, J.; Stuart, M. C. A.; Hou, L.; Feringa, B. L. J. Am. Chem. Soc. 2016, 138, 660.  doi: 10.1021/jacs.5b11318

    19. [19]

      Kazaryan, A.; Filatov, M. J. Phys. Chem. A 2009, 113, 11630.  doi: 10.1021/jp902389j

    20. [20]

      Torras, J.; Rodriguez-Ropero, F.; Bertran, O.; Alemán, C. J. Phys. Chem. C 2009, 113, 3574.  doi: 10.1021/jp809495b

    21. [21]

      Pérez-Hernández, G.; González, L. Phys. Chem. Chem. Phys. 2010, 12, 12279.  doi: 10.1039/c0cp00324g

    22. [22]

      Cnossen, A.; Kistemaker, J. C. M.; Kojima, T.; Feringa, B. L. J. Org. Chem. 2014, 79, 927.  doi: 10.1021/jo402301j

    23. [23]

      Li, Y.; Liu, F.; Wang, B.; Su, Q.; Wang, W.; Morokuma, K. J. Chem. Phys. 2016, 145, 244311.

    24. [24]

      Liu, F.; Morokuma, K. J. Am. Chem. Soc. 2012, 134, 4864.  doi: 10.1021/ja211441n

    25. [25]

      Lorenz, T.; Crumbach, M.; Eckert, T.; Lik, A.; Helten, H. Angew. Chem. Int. Ed. 2017, 56, 2780.  doi: 10.1002/anie.201612476

    26. [26]

      Krausbeck, F.; Mendive-Tapia, D.; Thom, A. J. W.; Bearpark, M. J. Comput. Theor. Chem. 2014, 1040-1041, 14.

    27. [27]

      Malmqvist, P. A.; Roos, B. O.; Schimmelpfennig, B. Chem. Phys. Lett. 2002, 357, 230.  doi: 10.1016/S0009-2614(02)00498-0

    28. [28]

      Kerridge, A. Phys. Chem. Chem. Phys. 2013, 15, 2197.  doi: 10.1039/c2cp43982d

    29. [29]

      Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.  doi: 10.1021/ar700111a

    30. [30]

      Levine, B. G.; Ko, C.; Quenneville, J.; Martinez, T. J. Mol. Phys. 2006, 104, 1039.  doi: 10.1080/00268970500417762

    31. [31]

      Levine, B. G.; Coe, J. D.; Martínez, T. J. J. Phys. Chem. B 2008, 112, 405.  doi: 10.1021/jp0761618

    32. [32]

      Maeda, S.; Ohno, K.; Morokuma, K. J. Chem. Theor. Comput. 2010, 6, 1538.  doi: 10.1021/ct1000268

    33. [33]

      Andersson, K.; Malmqvist, P. A.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218.  doi: 10.1063/1.462209

    34. [34]

      Finley, J.; Malmqvist, P. A.; Roos, B. O.; Serrano-Andres, L. Chem. Phys. Lett. 1998, 288, 299.  doi: 10.1016/S0009-2614(98)00252-8

    35. [35]

      Andersson, K. Theor. Chem. Acc. 1995, 91, 31.  doi: 10.1007/BF01113860

    36. [36]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Montgomery, J. A. ; Vreven, T. ; Kudin, K. N. ; Burant, J. C. ; Millam, J. M. ; Iyengar, S. S. ; Tomasi, J. ; Barone, V. ; Mennucci, B. ; Cossi, M. ; Scalmani, G. ; Rega, N. ; Petersson, G. A. ; Nakatsuji, H. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Klene, M. ; Li, X. ; Knox, J. E. ; Hratchian, H. P. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Ayala, P. Y. ; Morokuma, K. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Zakrzewski, V. G. ; Dapprich, S. ; Daniels, A. D. ; Strain, M. C. ; Farkas, O. ; Malick, D. K. ; Rabuck, A. D. ; Raghavachari, K. ; Foresman, J. B. ; Ortiz, J. V. ; Cui, Q. ; Baboul, A. G. ; Clifford, S. ; Cioslowski, J. ; Stefanov, B. B. ; Liu, G. ; Liashenko, A. ; Piskorz, P. ; Komaromi, I. ; Martin, R. L. ; Fox, D. J. ; Keith, T. ; Al-Laham, M. A. ; Peng, C. Y. ; Nanayakkara, A. ; Challacombe, M. ; Gill, P. M. W. ; Johnson, B. ; Chen, W. ; Wong, M. W. ; Gonzalez, C. ; Pople, J. A. Gaussian 09, Revision A. 02, Gaussian, Inc, 2009.

    37. [37]

      Karlström, G.; Lindh, R.; Malmqvist, P. A.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P. O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo, L. Comput. Mater. Sci. 2003, 28, 222.  doi: 10.1016/S0927-0256(03)00109-5

    38. [38]

      Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P. A.; Neogrády, P.; Pedersen, T. B.; Pitonak, M.; Reiher, M.; Roos, B. O.; Serrano-andres, L.; Urban, M.; Veryazov, V.; Lindh, R. J. Comput. Chem. 2010, 31, 224.  doi: 10.1002/jcc.v31:1

    39. [39]

      Kistemaker, J. C. M.; Pizzolato, S. F.; van Leeuwen, T.; Pijper, T. C.; Feringa, B. L. Chem. Eur. J. 2016, 22, 13478.  doi: 10.1002/chem.201602276

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    3. [3]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    4. [4]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    10. [10]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    19. [19]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    20. [20]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

Metrics
  • PDF Downloads(13)
  • Abstract views(1004)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return