Citation: Liu Mingli, Wu Qi, Shi Huifang, An Zhongfu, Huang Wei. Progress of Research on Organic/Organometallic Mechanoluminescent Materials[J]. Acta Chimica Sinica, ;2018, 76(4): 246-258. doi: 10.6023/A17110504 shu

Progress of Research on Organic/Organometallic Mechanoluminescent Materials

  • Corresponding author: An Zhongfu, iamzfan@njtech.edu.cn Huang Wei, iamwhuang@njtech.edu.cn
  • Received Date: 24 November 2017
    Available Online: 22 April 2018

    Fund Project: the Natural Science Foundation of Jiangsu Province BK2015064Project supported by the National Basic Research Program 973 of China (No. 2015CB932200), the National Natural Science Foundation of China (Nos. 51673095 and 61505078), the Natural Science Foundation of Jiangsu Province (No. BK2015064) and the "High-Level Talents in Six Industries" of Jiangsu Province (No. XCL-025)the National Natural Science Foundation of China 61505078the National Basic Research Program 973 of China 2015CB932200the National Natural Science Foundation of China 51673095the "High-Level Talents in Six Industries" of Jiangsu Province XCL-025

Figures(13)

  • Functional materials with unique properties or specific functions, have been developed greatly in the areas of information, aerospace, energy, biology and so forth. Recently, organic/organometallic mechanoluminescence (ML) has attracted considerable attention owing to its unique optical properties induced by external stimulus, which demonstrates great potential as a candidate for sensing of impact, stress, tension or pressure, display and lighting, as well as imaging. In this review, the recent progress on organic/organometallic ML materials, the relationship between molecular structures and properties, their luminescent mechanisms, as well as the applications are summarized. Currently, the organic/organometallic ML systems mainly contain small molecules, including organometallic complexes and pure organic compounds, and polymers. In comparison to the design and preparation of materials, the progress of underlying mechanisms still remains ambiguous without a universal acknowledgement. Up to now, it is generally accepted that organic/organometallic ML materials should have non-centrosymmetric molecular structures, dipolar structures and piezoelectric properties. Because when the crystals are stimulated under grinding, rubbing, cutting, cleaving, shaking, scratching, compressing, or crushing, the center asymmetric molecular structures of organic/organometallic materials are broken, resulting in disruption of the crystal and electronic discharge at the crack surface, then emitting obvious light from the surface of solids state. This organic ML mechanism is mainly derived from the mechanism of inorganic ML. Mechanisms of organic/organometallic ML materials need to be verified by further experiments and theoretical study. As to the mechanism of mechanically activated luminescence of pure organic polymers, it was reported that when the material was stimulated by mechanical forces, the excited state went back to the ground state and emitted light. This review will focus on the recent progress of organic/organometallic mechanoluminescent materials including rare-earth organometallic complex, transition organometallic complex, pure organic small molecule materials and pure organic polymer materials, and their mechanisms during the past decades. Finally, the challenges and the outlook of the organic/organometallic ML have been discussed.
  • 加载中
    1. [1]

      Liang, X.; Wang, Z.; Wang, L.; Hanif, M.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Chin. J. Chem. 2017, 35, 1559.  doi: 10.1002/cjoc.v35.10

    2. [2]

      Pan, L.; Luo, W.; Chen, M.; Liu, J.; Xu, L.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Chin. J. Org. Chem. 2016, 36, 1316.
       

    3. [3]

      Zhang, Z.; Li, W.; Ye, K.; Zhang, H. Acta Chim. Sinica 2016, 74, 179.
       

    4. [4]

      Tang, Y.; Huang, H.; Peng, Y.; Ruan, Q.; Wang, K.; Yi, P.; Liu, D.; Zhong, C. Chin. J. Chem. 2017, 35, 1091.  doi: 10.1002/cjoc.v35.7

    5. [5]

      Guan, W.; Zhou, W.; Lü, C. Acta Chim. Sinica 2016, 74, 929.
       

    6. [6]

      An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Nat. Mater. 2015, 14, 685.  doi: 10.1038/nmat4259

    7. [7]

      Li, L.; Cao, X.; Huang, R. Chin. J. Chem. 2016, 34, 143.  doi: 10.1002/cjoc.v34.2

    8. [8]

      Wei, J.; Liang, B.; Duan, R.; Cheng, Z.; Li, C.; Zhou, T.; Yi, Y.; Wang, Y. Angew. Chem., Int. Ed. 2016, 55, 15589.  doi: 10.1002/anie.201607653

    9. [9]

      Zhao, W.; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Chem 2016, 1, 592.  doi: 10.1016/j.chempr.2016.08.010

    10. [10]

      Cao, Y.; Wang, R.; Wu, G.; Fang, Q.; Qiu, S. Chin. J. Chem. 2016, 34, 196.  doi: 10.1002/cjoc.v34.2

    11. [11]

      Li, W.; Peng, Q.; Xie, Y.; Zhang, T.; Shuai, Z. Acta Chim. Sinica 2016, 74, 902.
       

    12. [12]

      Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.  doi: 10.1039/C3CS60449G

    13. [13]

      Shi, H.; Ma, X.; Zhao, Q.; Liu, B.; Qu, Q.; An, Z.; Zhao, Y.; Huang, W. Adv. Funct. Mater. 2014, 24, 4823.  doi: 10.1002/adfm.v24.30

    14. [14]

      Huang, Y.; Lei, L.; Zheng, C.; Wei, B.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Acta Chim. Sinica 2016, 74, 885.
       

    15. [15]

      Peng, Z.; Wang, Z.; Tong, B.; Ji, Y.; Shi, J.; Zhi, J.; Dong, Y. Chin. J. Chem. 2016, 34, 1071.  doi: 10.1002/cjoc.v34.11

    16. [16]

      Qian, X.; Su, M.; Li, F. Acta Chim. Sinica 2016, 74, 565.  doi: 10.3866/PKU.WHXB201511301
       

    17. [17]

      Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.  doi: 10.1039/C6MH00025H

    18. [18]

      Chandra, B. P.; Zink, J. I. J. Chem. Phys. 1980, 73, 5933.  doi: 10.1063/1.440151

    19. [19]

      Hocking, M. B.; Preston, D. M.; Zink, J. I. J. Lumin. 1989, 43, 309.  doi: 10.1016/0022-2313(89)90101-4

    20. [20]

      Li, X.; Zheng, Y.; Zuo, J.; Song, Y.; You, X. Polyhedron 2007, 26, 5257.  doi: 10.1016/j.poly.2007.07.047

    21. [21]

      Fontenot, R. S.; Bhat, K. N.; Hollerman, W. A.; Aggarwal, M. D.; Nguyen, K. M. CrystEngComm. 2012, 14, 1382.  doi: 10.1039/C2CE06277A

    22. [22]

      Nishida, J. I.; Ohura, H.; Kita, Y.; Hasegawa, H.; Kawase, T.; Takada, N.; Sato, H.; Sei, Y.; Yamashita, Y. J. Org. Chem. 2016, 81, 433.  doi: 10.1021/acs.joc.5b02191

    23. [23]

      Fontenot, R. S.; Bhat, K. N.; Owens, C. A.; Hollerman, W. A.; Aggarwal, M. D. J. Lumin. 2015, 158, 428.  doi: 10.1016/j.jlumin.2014.10.026

    24. [24]

      Chen, X.; Zhu, X.; Xu, Y.; Raj, S. S. S.; Öztürk, S.; Fun, H.; Ma, J.; You, X. J. Mater. Chem. 1999, 9, 2919.  doi: 10.1039/a904411f

    25. [25]

      Xu, S.; Liu, T.; Mu, Y.; Wang, Y.; Chi, Z.; Lo, C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874.  doi: 10.1002/anie.201409767

    26. [26]

      Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9879.  doi: 10.1039/C7TC03641H

    27. [27]

      Rheingold, A. L.; King, W. Inorg. Chem. 1989, 28, 1715.  doi: 10.1021/ic00308a025

    28. [28]

      Chen, Y.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Nat. Chem. 2012, 4, 559.  doi: 10.1038/nchem.1358

    29. [29]

      Wang, M.; Guo, G.; Chen, W.; Xu, G.; Zhou, W.; Wu, K.; Huang, J. Angew. Chem., Int. Ed. 2007, 46, 3909.  doi: 10.1002/(ISSN)1521-3773

    30. [30]

      Wang, G.; Xu, G.; Wang, M.; Cai, L.; Li, W.; Guo, G. Chem. Sci. 2015, 6, 7222.  doi: 10.1039/C5SC02501J

    31. [31]

      Wang, M.; Guo, G. Chem. Commun. 2016, 52, 13194.  doi: 10.1039/C6CC03184F

    32. [32]

      Zhang, N.; Sun, C.; Jiang, X.; Xing, X.; Yan, Y.; Cai, L.; Wang, M.; Guo, G. C. Chem. Commun. 2017, 53, 9269.  doi: 10.1039/C7CC05446G

    33. [33]

      Wang, M.; Guo, S.; Li, Y.; Cai, L.; Zou, J.; Xu, G.; Zhou, W.; Zheng, F.; Guo, G. J. Am. Chem. Soc. 2009, 131, 13572.  doi: 10.1021/ja903947b

    34. [34]

      Yang, H.; Zhang, Y.; Li, Y.; Wang, J.; Li, X.; Song, J.; Zhang, B.; Feng, Y. Chin. J. Org. Chem. 2017, 37, 1991.
       

    35. [35]

      Mukherjee, S.; Thilagar, P. Chem. Commun. 2015, 51, 10988.  doi: 10.1039/C5CC03114A

    36. [36]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.  doi: 10.1002/adma.v26.47

    37. [37]

      Chen, X.; Duan, C.; Zhu, X.; You, X.; Raj, S. S. S.; Fun, H.; Wu, J. Mater. Chem. Phys. 2001, 72, 11.  doi: 10.1016/S0254-0584(01)00299-1

    38. [38]

      Xu, B.; Li, W.; He, J.; Wu, S.; Zhu, Q.; Yang, Z.; Wu, Y.; Zhang, Y.; Jin, C.; Lu, P.; Chi, Z.; Liu, S.; Xu, J.; Bryce, M. R. Chem. Sci. 2016, 7, 5307.  doi: 10.1039/C6SC01325B

    39. [39]

      Xu, B.; He, J.; Mu, Y.; Zhu, Q.; Wu, S.; Wang, Y.; Zhang, Y.; Jin, C.; Lo, C.; Chi, Z.; Lien, A.; Liu, S.; Xu, J. Chem. Sci. 2015, 6, 3236.  doi: 10.1039/C5SC00466G

    40. [40]

      Neena, K. K.; Sudhakar, P.; Dipak, K.; Thilagar, P. Chem. Commun. 2017, 53, 3641.  doi: 10.1039/C6CC09717K

    41. [41]

      Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Angew. Chem., Int. Ed. 2017, 56, 7171.  doi: 10.1002/anie.201703638

    42. [42]

      Eddingsaas, N. C.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 6718.  doi: 10.1021/ja0716498

    43. [43]

      Walton, A. J. Adv. Phys. 1977, 26, 887.  doi: 10.1080/00018737700101483

    44. [44]

      Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M. J. Am. Chem. Soc. 1962, 84, 167.  doi: 10.1021/ja00861a008

    45. [45]

      Goodgame, D. M. L.; Cotton, F. A. J. Chem. Soc. 1961, 3735.  doi: 10.1039/jr9610003735

    46. [46]

      Wong, H. Y.; Lo, W. S.; Chan, W. T. K.; Law, G. L. Inorg. Chem. 2017, 56, 5135.  doi: 10.1021/acs.inorgchem.7b00273

    47. [47]

      Nakayama, H.; Nishida, J.; Takada, N.; Sato, H.; Yamashita, Y. Chem. Mater. 2012, 24, 671.  doi: 10.1021/cm202650u

    48. [48]

      Balsamy, S.; Natarajan, P.; Vedalakshmi, R.; Muralidharan, S. Inorg. Chem. 2014, 53, 6054.  doi: 10.1021/ic500400y

    49. [49]

      Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D. J. Lumin. 2013, 134, 477.  doi: 10.1016/j.jlumin.2012.07.042

    50. [50]

      Li, C.; Xu, C. N.; Imai, Y.; Bu, N. Strain 2011, 47, 483.  doi: 10.1111/str.2011.47.issue-6

    51. [51]

      Sakai, K.; Koga, T.; Imai, Y.; Maehara, S.; Xu, C. Phys. Chem. Chem. Phys. 2006, 8, 2819.  doi: 10.1039/b604656h

    52. [52]

      Cheng, Z.; Lin, J. Macromol. Rapid Commun. 2015, 36, 790.  doi: 10.1002/marc.201400588

    53. [53]

      Xu, X.; Wang, M.; Lin, L.; Zhao, B.; He, D. Mater. Rev. 2015, 29, 61.  doi: 10.11896/j.issn.1005-023X.2015.01.010

    54. [54]

      Liu, Z.; Lai, B.; Wen, H.; Robbins, J.; Nei, H. Chin. J. Chem. 2016, 34, 1304.  doi: 10.1002/cjoc.v34.12

    55. [55]

      Yang, Z.; Lin, J.; Su, M.; Tao, Z.; Wang, W. Acta Chim. Sinica 2001, 59, 736.  doi: 10.3321/j.issn:0567-7351.2001.05.020

    56. [56]

      Huang, J.; Hou, B.; Ling, H.; Liu, J.; Yu, X. Inorg. Chem. 2014, 53, 9541.  doi: 10.1021/ic500748c

    57. [57]

      Hurt, C. R.; Mcavoy, N.; Bjorklund, S.; Filipescu, N. N. Nature 1966, 212, 179.
       

    58. [58]

      Sweeting, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 109, 2652.
       

    59. [59]

      Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D. J. Lumin. 2012, 132, 1812.  doi: 10.1016/j.jlumin.2012.02.027

    60. [60]

      Fontenot, R. S.; Bhat, K. N.; Hollerman, W. A.; Alapati, T. R.; Aggarwal, M. D. ECS J. Solid State Sci. Technol. 2013, 2, 384.  doi: 10.1149/2.030309jss

    61. [61]

      Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D.; Penn, B. G. Polym. J. 2013, 46, 111.
       

    62. [62]

      Chen, X.; Liu, S.; Yu, Z.; Cheung, K.; Ma, J.; Min, N.; You, X. J. Coord. Chem. 1999, 47, 349.  doi: 10.1080/00958979908023067

    63. [63]

      Xiong, R.; You, X. Inorg. Chem. 2002, 5, 677.
       

    64. [64]

      Chen, X.; Liu, S.; Duan, C.; Xu, Y.; You, X. Polyhedron 1998, 17, 1883.  doi: 10.1016/S0277-5387(97)00519-6

    65. [65]

      Takada, N.; Sugiyama, J.; Minami, N.; Hieda, S. Mol. Cryst. Liq. Cryst. 1997, 295, 71.  doi: 10.1080/10587259708042799

    66. [66]

      Takada, N.; Hieda, S.; Sugiyama, J.; Katoh, R.; Minami, N. Synth. Met. 2000, 111, 587.

    67. [67]

      Takada, N.; Sugiyama, J.; Katoh, R.; Minami, N.; Hieda, S. Synth. Met. 1997, 91, 351.  doi: 10.1016/S0379-6779(98)80058-1

    68. [68]

      Li, D.; Li, C.; Wang, J.; Kang, L.; Wu, T.; Li, Y.; You, X. Eur. J. Inorg. Chem. 2009, 2009, 4844.  doi: 10.1002/ejic.v2009:32

    69. [69]

      Rausch, J.; Lorenz, V.; Hrib, C. G.; Frettloh, V.; Adlung, M.; Wickleder, C.; Hilfert, L.; Jones, P. G.; Edelmann, F. T. Inorg. Chem. 2014, 53, 11662.  doi: 10.1021/ic501837x

    70. [70]

      George, T. M.; Sajan, M. J.; Gopakumar, N.; Reddy, M. L. P. J. Photochem. Photobiol., A 2016, 317, 88.  doi: 10.1016/j.jphotochem.2015.11.016

    71. [71]

      Hasegawa, Y.; Hieda, R.; Miyata, K.; Nakagawa, T.; Kawai, T. Eur. J. Inorg. Chem. 2011, 2011, 4978.  doi: 10.1002/ejic.201100688

    72. [72]

      Hasegawa, Y.; Tateno, S.; Yamamoto, M.; Nakanishi, T.; Kita-gawa, Y.; Seki, T.; Ito, H.; Fushimi, K. Chem.-Eur. J. 2017, 23, 2666.  doi: 10.1002/chem.201605054

    73. [73]

      Biju, S.; Gopakumar, N.; Bunzli, J. C. G.; Scopelliti, R.; Kim, H. K.; Reddy, M. L. P. Inorg. Chem. 2013, 52, 8750.  doi: 10.1021/ic400913f

    74. [74]

      Mikhalyova, E. A.; Yakovenko, A. V.; Zeller, M.; Kiskin, M. A.; Kolomzarov, Y. V.; Eremenko, I. L.; Addison, A. W.; Pavlishchuk, V. V. Inorg. Chem. 2015, 54, 3125.  doi: 10.1021/ic502120g

    75. [75]

      Wu, Z.; Huang, X. Chin. J. Chem. 2016, 34, 703  doi: 10.1002/cjoc.v34.7

    76. [76]

      Chen, J.; Zhang, Q.; Zheng, F.; Liu, Z.; Wang, S.; Wu, A.; Guo, G. Dalton Trans. 2015, 44, 3289.  doi: 10.1039/C4DT03694H

    77. [77]

      Chandra, B. P.; Jaiswal, A. K.; Cwandraker, T. R.; Kaza, B. R. J. Lumin. 1982, 27, 101.  doi: 10.1016/0022-2313(82)90032-1

    78. [78]

      Chandra, B. P.; Deshmukh, N. G.; Sahu, R. B.; Verma, A. K. Cryst. Res. Technol. 1986, 21, 1559.  doi: 10.1002/(ISSN)1521-4079

    79. [79]

      Kobayashi, A.; Hasegawa, T.; Yoshida, M.; Kato, M. Inorg. Chem. 2016, 55, 1978.  doi: 10.1021/acs.inorgchem.5b02160

    80. [80]

      SchÖnweiz, S.; Sorsche, D.; Schwarz, B.; Rau, S.; Streb, C. Dalton Trans. 2017, 46, 9760.  doi: 10.1039/C7DT02316B

    81. [81]

      Knotter, D. M.; Van Maanen, H. L.; Grove, D. M.; Spek, A. L.; Van Koten, G. Inorg. Chem. 1991, 30, 3309.  doi: 10.1021/ic00017a017

    82. [82]

      Knotter, D. M.; Blasse, G.; Vliet, J. P. M. V.; Koten, G. V. Inorg. Chem. 1992, 31, 2196.  doi: 10.1021/ic00037a038

    83. [83]

      İncel, A.; Varlikli, C.; McMillen, C. D.; Demir, M. M. J. Phys. Chem. C 2017, 121, 11709.  doi: 10.1021/acs.jpcc.7b02875

    84. [84]

      Tseng, C.; Fox, M. A.; Liao, J.; Ku, C.; Sie, Z.; Chang, C.; Wang, J.; Chen, Z.; Lee, G.; Chi, Y. J. Mater. Chem. C 2017, 5, 1420.  doi: 10.1039/C6TC05154E

    85. [85]

      Hsu, C. W.; Ly, K. T.; Lee, W. K.; Wu, C. C.; Wu, L. C.; Lee, J. J.; Lin, T. C.; Liu, S. H.; Chou, P. T.; Lee, G. H.; Chi, Y. ACS Appl. Mater. Interfaces 2016, 8, 33888.  doi: 10.1021/acsami.6b12707

    86. [86]

      Inoue, T.; Tazuke, S. Chem. Lett. 1981, 5, 589.

    87. [87]

      Nowak, R.; Krajewska, A.; Samoć, M. Chem. Phys. Lett. 1983, 94, 270.  doi: 10.1016/0009-2614(83)87085-7

    88. [88]

      Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 15299.  doi: 10.1002/anie.201708119

    89. [89]

      Arivazhagan, C.; Maity, A.; Bakthavachalam, K.; Jana, A.; Panigrahi, S. K.; Suresh, E.; Das, A.; Ghosh, S. Chem.-Eur. J. 2017, 23, 7046.  doi: 10.1002/chem.201700187

    90. [90]

      Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53, 11330.  doi: 10.1039/C7CC04663D

    91. [91]

      Hardy, G. E.; Kaska, W. C.; Chandra, B. P.; Zink, J. I. J. Am. Chem. Soc. 1981, 103, 1074.  doi: 10.1021/ja00395a014

    92. [92]

      Sweeting, L. M.; Rheingold, A. L. J. Phys. Chem. 1988, 92, 5648.  doi: 10.1021/j100331a022

    93. [93]

      Guo, J.; Li, X.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S.; Tang, B. Adv. Funct. Mater. 2017, 27, 1606458.  doi: 10.1002/adfm.v27.13

    94. [94]

      Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 880.  doi: 10.1002/anie.201610453

    95. [95]

      Clough, J. M.; Creton, C.; Craig, S. L.; Sijbesma, R. P. Adv. Funct. Mater. 2016, 26, 9063.  doi: 10.1002/adfm.v26.48

    96. [96]

      Chen, Y.; Sijbesma, R. P. Macromolecules 2014, 47, 3797.  doi: 10.1021/ma500598t

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(194)
  • Abstract views(6821)
  • HTML views(2260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return