Citation: Zhao Keli, Hao Ying, Zhu Mo, Cheng Guosheng. A Review: Biodegradation Strategy of Graphene-Based Materials[J]. Acta Chimica Sinica, ;2018, 76(3): 168-176. doi: 10.6023/A17110499 shu

A Review: Biodegradation Strategy of Graphene-Based Materials

  • Corresponding author: Cheng Guosheng, gscheng2006@sinano.ac.cn
  • Received Date: 22 November 2017
    Available Online: 7 March 2018

    Fund Project: the National Key Basic Research Program of China 2014CB965003the National Key Basic Research Program of China 973 ProgramProject supported by the National Key Basic Research Program of China (973 Program, No. 2014CB965003)

Figures(6)

  • Since its discovery in 2004, the new frontier materials graphene and its derivatives have attracted a great deal of attention on the fields of new batteries, sensors, new energy and biomedicine, due to their unique electrical, optical and mechanical properties. Specifically, it has been developed rapidly in the biomedical field. The good biocompatibility has endowed graphene and its derivatives great prospects for their biological applications. In order to realize the in vivo application of graphene materials and improve the safety of the environment and life system, it is crucial to consider and study on the biodegradation behaviors of graphene. The research on biodegradation of graphene currently mainly focuses on the enzymatic degradation. The degradation behaviors can be tuned by the modification via a series of methods, such as heterogeneous atom doping and surface functionalization, etc. The progress of biodegradation of graphene and their derivatives, especially the enzymatic degradation and their biomedical applications is discussed. The important basis and guidance to further promote the in vivo study of graphene materials will be provided.
  • 加载中
    1. [1]

      Zhang, Y.; Zheng, J.; Guo, M. Chin. J. Chem. 2016, 34, 1268.  doi: 10.1002/cjoc.v34.12

    2. [2]

      Jiang, S.; Qiu, H.; Gao, S.; Chen, P.; Li, Z.; Yu, K.; Yue, W.; Yang, C.; Huo, Y.; Wang, S. Chin. J. Chem. 2016, 34, 1039.  doi: 10.1002/cjoc.v34.10

    3. [3]

      Zhou, P.; He, D. Chin. J. Chem. 2016, 34, 795.  doi: 10.1002/cjoc.v34.8

    4. [4]

      Gu, X.; Zhang, S.; Hou, Y. Chin. J. Chem. 2016, 34, 13.  doi: 10.1002/cjoc.201500675

    5. [5]

      Liu, D.; Zhang, C.; Lv, X.; Zheng, X.; Zhang, L.; Zhi, L.; Yang, Q.-H. Chin. J. Chem. 2016, 34, 41.  doi: 10.1002/cjoc.201500321

    6. [6]

      Chen, W.; Sin, M.; Wei, P.-J.; Zhang, Q.-L.; Liu, J.-G. Chin. J. Chem. 2016, 34, 878.  doi: 10.1002/cjoc.201600196

    7. [7]

      Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.  doi: 10.1002/cjoc.v34.8

    8. [8]

      Gao, Y.; Wang, T.; Liu, F. Chin. J. Chem. 2016, 34, 1297.  doi: 10.1002/cjoc.v34.12

    9. [9]

      Wang, C.; Guo, Z.; Zhang, L.; Zhang, N.; Zhang, K.; Fei, B.; Wang, H.; Xu, J.; Shi, H.; Qin, M.; Ren, L.; Wu, X. Chin. J. Chem. 2016, 34, 1151.  doi: 10.1002/cjoc.v34.11

    10. [10]

      Zhang, J.; Jiang, M.; Xing, L.; Qin, K.; Liu, T.; Zhou, J.; Si, W.; Cui, H.; Zhuo, S. Chin. J. Chem. 2016, 34, 46.  doi: 10.1002/cjoc.201500656

    11. [11]

      Zhou, Q.; Chen, S.; Zhang, M.; Wang, L.; Li, Y.; Shi, G. Chin. J. Chem. 2016, 34, 59.  doi: 10.1002/cjoc.201500609

    12. [12]

      Fan, X.; Yang, Z.; Liu, Z. Chin. J. Chem. 2016, 34, 107.  doi: 10.1002/cjoc.201500076

    13. [13]

      Wang, R.; Jia, P.; Yang, Y.; An, N.; Zhang, Y.; Wu, H.; Hu, Z. Chin. J. Chem. 2016, 34, 114.  doi: 10.1002/cjoc.201500595

    14. [14]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.  doi: 10.1021/cr900070d

    15. [15]

      Liang, T.; Kong, Y.; Chen, H.; Xu, M. Chin. J. Chem. 2016, 34, 32.  doi: 10.1002/cjoc.201500429

    16. [16]

      Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46, 2329.  doi: 10.1021/ar300203n

    17. [17]

      Zhao, D.; Li, Z.; Liu, L.; Zhang, Y.; Ren, D.; Li, J. Acta Chim. Sinica 2014, 72, 185.
       

    18. [18]

      Li, N.; Zhang, Q.; Gao, S.; Song, Q.; Huang, R.; Wang, L.; Liu, L.; Dai, J.; Tang, M.; Cheng, G. Sci. Rep. 2013, 3, 1604.  doi: 10.1038/srep01604

    19. [19]

      Xiao, M.; Kong, T.; Wang, W.; Song, Q.; Zhang, D.; Ma, Q.; Cheng, G. Adv. Funct. Mater. 2015, 25, 6165.  doi: 10.1002/adfm.v25.39

    20. [20]

      Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem. 2010, 49, 10084.  doi: 10.1002/anie.201006240

    21. [21]

      Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. ACS Nano 2015, 9, 4636.  doi: 10.1021/acsnano.5b01179

    22. [22]

      Cao, X.; Yin, Z.; Zhang, H. Energy Environ. Sci. 2014, 7, 1850.  doi: 10.1039/C4EE00050A

    23. [23]

      Wu, J.; Zhou, A.; Huang, Z.; Li, L.; Bai, H. Chin. J. Chem. 2016, 34, 67.  doi: 10.1002/cjoc.201500700

    24. [24]

      Liu, Y.; Dong, X.; Chen, P. Chem. Soc. Rev. 2012, 41, 2283.  doi: 10.1039/C1CS15270J

    25. [25]

      Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Drug Discovery Today 2017, 22, 1302.  doi: 10.1016/j.drudis.2017.04.002

    26. [26]

      Cheng, J.; Wan, W.; Zhu, W. Chin. J. Chem. 2016, 34, 53.  doi: 10.1002/cjoc.201500339

    27. [27]

      Li, Y.; Zhang, Y.; Han, G.; Xiao, Y.; Li, M.; Zhou, W. Chin. J. Chem. 2016, 34, 82.  doi: 10.1002/cjoc.201500747

    28. [28]

      Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.  doi: 10.1021/ja803688x

    29. [29]

      Liu, J.; Cui, L.; Losic, D. Acta Biomater. 2013, 9, 9243.  doi: 10.1016/j.actbio.2013.08.016

    30. [30]

      Feng, L.; Zhang, S.; Liu, Z. Nanoscale 2011, 3, 1252.  doi: 10.1039/c0nr00680g

    31. [31]

      Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569.  doi: 10.1002/smll.v7.11

    32. [32]

      Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36.  doi: 10.1021/nl071822y

    33. [33]

      Fan, W.; Miao, Y.-E.; Ling, X.; Liu, T. Chin. J. Chem. 2016, 34, 73.  doi: 10.1002/cjoc.201500585

    34. [34]

      Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620.
       

    35. [35]

      Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. Small 2012, 8, 2577.  doi: 10.1002/smll.v8.16

    36. [36]

      Feng, L.; Wu, L.; Qu, X. Adv. Mater. 2013, 25, 168.  doi: 10.1002/adma.201203229

    37. [37]

      Du, Y.; Guo, S. Nanoscale 2016, 8, 2532.  doi: 10.1039/C5NR07579C

    38. [38]

      Lin, J.; Chen, X.; Huang, P. Adv. Drug Delivery Rev. 2016, 105, 242.  doi: 10.1016/j.addr.2016.05.013

    39. [39]

      Keisham, B.; Cole, A.; Nguyen, P.; Mehta, A.; Berry, V. ACS Appl. Mater. Interfaces 2016, 8, 32717.  doi: 10.1021/acsami.6b12307

    40. [40]

      Meng, F.; Lu, W.; Li, Q.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Adv. Mater. 2015, 27, 5113.  doi: 10.1002/adma.201501126

    41. [41]

      Wu, X.; Ding, S.-J.; Lin, K.; Su, J. J. Mater. Chem. B 2017, 5, 3084.  doi: 10.1039/C6TB03067J

    42. [42]

      Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G. Biomaterials 2011, 32, 9374.  doi: 10.1016/j.biomaterials.2011.08.065

    43. [43]

      Qi, L.; Li, N.; Huang, R.; Song, Q.; Wang, L.; Zhang, Q.; Su, R.; Kong, T.; Tang, M.; Cheng, G. PLoS One 2013, 8, e59022.  doi: 10.1371/journal.pone.0059022

    44. [44]

      Song, Q.; Jiang, Z.; Li, N.; Liu, P.; Liu, L.; Tang, M.; Cheng, G. Biomaterials 2014, 35, 6930.  doi: 10.1016/j.biomaterials.2014.05.002

    45. [45]

      Ulloa Severino, F. P.; Ban, J.; Song, Q.; Tang, M.; Bianconi, G.; Cheng, G.; Torre, V. Sci. Rep. 2016, 6, 29640.  doi: 10.1038/srep29640

    46. [46]

      Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D.-H.; Kostarelos, K. Adv. Mater. 2013, 25, 2258.  doi: 10.1002/adma.201203700

    47. [47]

      Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. ACS Appl. Mater. Interfaces 2013, 5, 1761.  doi: 10.1021/am303005j

    48. [48]

      Wang, I. N. E.; Robinson, J. T.; Do, G.; Hong, G.; Gould, D. R.; Dai, H.; Yang, P. C. Small 2014, 10, 1479.  doi: 10.1002/smll.v10.8

    49. [49]

      Depan, D.; Girase, B.; Shah, J. S.; Misra, R. D. K. Acta Biomater. 2011, 7, 3432.  doi: 10.1016/j.actbio.2011.05.019

    50. [50]

      Murray, E.; Thompson, B. C.; Sayyar, S.; Wallace, G. G. Polym. Degrad. Stabil. 2015, 111, 71.  doi: 10.1016/j.polymdegradstab.2014.10.010

    51. [51]

      Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Grácio, J. J. A.; Dash, D. ACS Nano 2011, 5, 4987.  doi: 10.1021/nn201092p

    52. [52]

      Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Carbon 2011, 49, 986.  doi: 10.1016/j.carbon.2010.11.005

    53. [53]

      Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S.-T.; Liu, Z. ACS Nano 2011, 5, 516.  doi: 10.1021/nn1024303

    54. [54]

      Sasidharan, A.; Swaroop, S.; Koduri, C. K.; Girish, C. M.; Chandran, P.; Panchakarla, L. S.; Somasundaram, V. H.; Gowd, G. S.; Nair, S.; Koyakutty, M. Carbon 2015, 95, 511.  doi: 10.1016/j.carbon.2015.08.074

    55. [55]

      Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.; Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M. Nano Lett. 2011, 11, 5201.  doi: 10.1021/nl202515a

    56. [56]

      Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Chem. Commun. 2011, 47, 2580.  doi: 10.1039/C0CC04812G

    57. [57]

      Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22, 734.  doi: 10.1002/adma.v22:6

    58. [58]

      Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B. Chem. Commun. 2011, 47, 6858.  doi: 10.1039/c1cc11122a

    59. [59]

      Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J. Adv. Funct. Mater. 2012, 22, 2971.  doi: 10.1002/adfm.v22.14

    60. [60]

      Bai, H.; Jiang, W.; Kotchey, G. P.; Saidi, W. A.; Bythell, B. J.; Jarvis, J. M.; Marshall, A. G.; Robinson, R. A. S.; Star, A. J. Phys. Chem. C 2014, 118, 10519.  doi: 10.1021/jp503413s

    61. [61]

      Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J. Nanoscale 2013, 5, 4015.  doi: 10.1039/c3nr33849e

    62. [62]

      Zhang, L.; Petersen, E. J.; Habteselassie, M. Y.; Mao, L.; Huang, Q. Environ. Prog. 2013, 181, 335.

    63. [63]

      Schreiner, K. M.; Filley, T. R.; Blanchette, R. A.; Bowen, B. B.; Bolskar, R. D.; Hockaday, W. C.; Masiello, C. A.; Raebiger, J. W. Environmen. Sci. Technol. 2009, 43, 3162.  doi: 10.1021/es801873q

    64. [64]

      Liu, L.; Zhu, C.; Fan, M.; Chen, C.; Huang, Y.; Hao, Q.; Yang, J.; Wang, H.; Sun, D. Nanoscale 2015, 7, 13619.  doi: 10.1039/C5NR02502H

    65. [65]

      Girish, C. M.; Sasidharan, A.; Gowd, G. S.; Nair, S.; Koyakutty, M. Adv. Healthcare Mater. 2013, 2, 1489.  doi: 10.1002/adhm.v2.11

    66. [66]

      Kotchey, G. P.; Hasan, S. A.; Kapralov, A. A.; Ha, S. H.; Kim, K.; Shvedova, A. A.; Kagan, V. E.; Star, A. Acc. Chem. Res. 2012, 45, 1770.  doi: 10.1021/ar300106h

    67. [67]

      Kotchey, G. P.; Zhao, Y.; Kagan, V. E.; Star, A. Adv. Drug Delivery Rev. 2013, 65, 1921.  doi: 10.1016/j.addr.2013.07.007

    68. [68]

      Vlasova, I. I.; Kapralov, A. A.; Michael, Z. P.; Burkert, S. C.; Shurin, M. R.; Star, A.; Shvedova, A. A.; Kagan, V. E. Toxicol. Appl. Pharm. 2016, 299, 58.  doi: 10.1016/j.taap.2016.01.002

    69. [69]

      Chen, M.; Qin, X.; Zeng, G. Trends Biotechnol. 2017, 35, 836.  doi: 10.1016/j.tibtech.2016.12.001

    70. [70]

      Xing, W.; Lalwani, G.; Rusakova, I.; Sitharaman, B. Part. Part. Syst. Charact. 2014, 31, 745.  doi: 10.1002/ppsc.v31.7

    71. [71]

      Allen, B. L.; Kichambare, P. D.; Gou, P.; Vlasova, I. I.; Kapralov, A. A.; Konduru, N.; Kagan, V. E.; Star, A. Nano Lett. 2008, 8, 3899.  doi: 10.1021/nl802315h

    72. [72]

      Kotchey, G. P.; Allen, B. L.; Vedala, H.; Yanamala, N.; Kapralov, A. A.; Tyurina, Y. Y.; Klein-Seetharaman, J.; Kagan, V. E.; Star, A. ACS Nano 2011, 5, 2098.  doi: 10.1021/nn103265h

    73. [73]

      Filizola, M.; Loew, G. H. J. Am. Chem. Soc. 2000, 122, 18.  doi: 10.1021/ja992793z

    74. [74]

      Loeblein, M.; Perry, G.; Tsang, S. H.; Xiao, W.; Collard, D.; Coquet, P.; Sakai, Y.; Teo, E. H. T. Adv. Healthcare Mater. 2016, 5, 1177.  doi: 10.1002/adhm.v5.10

    75. [75]

      Kurapati, R.; Russier, J.; Squillaci, M. A.; Treossi, E.; Ménard-Moyon, C.; Del Rio-Castillo, A. E.; Vazquez, E.; Samorì, P.; Palermo, V.; Bianco, A. Small 2015, 11, 3985.  doi: 10.1002/smll.201500038

    76. [76]

      Kurapati, R.; Backes, C.; Ménard-Moyon, C.; Coleman, J. N.; Bianco, A. Angew. Chem., Int. Ed. 2016, 55, 5506.  doi: 10.1002/anie.201601238

    77. [77]

      Sureshbabu, A. R.; Kurapati, R.; Russier, J.; Ménard-Moyon, C.; Bartolini, I.; Meneghetti, M.; Kostarelos, K.; Bianco, A. Biomaterials 2015, 72, 20.  doi: 10.1016/j.biomaterials.2015.08.046

    78. [78]

      Andón, F. T.; Kapralov, A. A.; Yanamala, N.; Feng, W.; Baygan, A.; Chambers, B. J.; Hultenby, K.; Ye, F.; Toprak, M. S.; Brandner, B. D.; Fornara, A.; Klein-Seetharaman, J.; Kotchey, G. P.; Star, A.; Shvedova, A. A.; Fadeel, B.; Kagan, V. E. Small 2013, 9, 2721.  doi: 10.1002/smll.v9.16

    79. [79]

      ten Have, R.; Teunissen, P. J. M. Chem. Rev. 2001, 101, 3397.  doi: 10.1021/cr000115l

    80. [80]

      Hayashi, Y.; Yamazaki, I. J. Biol. Chem. 1979, 254, 9101.

    81. [81]

      Arnhold, J. Biochemistry 2004, 69, 4.

    82. [82]

      Valli, K.; Wariishi, H.; Gold, M. H. Biochemistry 1990, 29, 8535.  doi: 10.1021/bi00489a005

    83. [83]

      Lalwani, G.; Xing, W.; Sitharaman, B. J. Mater. Chem. B 2014, 2, 6354.  doi: 10.1039/C4TB00976B

    84. [84]

      Rao, C. N. R.; Gopalakrishnan, K.; Govindaraj, A. Nano Today 2014, 9, 324.  doi: 10.1016/j.nantod.2014.04.010

    85. [85]

      Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367.
       

    86. [86]

      Zhao, Y.; Allen, B. L.; Star, A. J. Phys. Chem. A 2011, 115, 9536.  doi: 10.1021/jp112324d

    87. [87]

      Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Chem. Soc. Rev. 2014, 43, 7067.  doi: 10.1039/C4CS00141A

    88. [88]

      Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nano Lett. 2011, 11, 2472.  doi: 10.1021/nl2009058

    89. [89]

      Huang, G.-J.; Chen, Z.-G.; Li, M.-D.; Yang, B.; Xin, M.-L.; Li, S.-P.; Yin, Z.-J. Acta Chim. Sinica 2016, 74, 789.  doi: 10.11862/CJIC.2016.117

    90. [90]

      Bianco, A.; Kostarelos, K.; Prato, M. Chem. Commun. 2011, 47, 10182.  doi: 10.1039/c1cc13011k

    91. [91]

      Rajendra, K.; Fanny, B.; Julie, R.; Sureshbabu, A. R.; Cécilia, M.-M.; Kostas, K.; Alberto, B. 2D Materials 2017, inpress.

    92. [92]

      Li, Y.; Feng, L.; Shi, X.; Wang, X.; Yang, Y.; Yang, K.; Liu, T.; Yang, G.; Liu, Z. Small 2014, 10, 1544.  doi: 10.1002/smll.v10.8

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(35)
  • Abstract views(3078)
  • HTML views(814)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return