Citation: Zhou Yiqing, Xiao Youli. Target Identification of Bioactive Natural Products[J]. Acta Chimica Sinica, ;2018, 76(3): 177-189. doi: 10.6023/A17110484 shu

Target Identification of Bioactive Natural Products

  • Corresponding author: Xiao Youli, ylxiao@sibs.ac.cn
  • Received Date: 6 November 2017
    Available Online: 25 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21572243, 21502206) and Chinese Academy of Sciences (No. XDPB0402)the National Natural Science Foundation of China 21502206Chinese Academy of Sciences XDPB0402the National Natural Science Foundation of China 21572243

Figures(8)

  • Natural products are rich sources of drugs for the treatment of human diseases, while identification of the protein targets and mode of actions is one of the most significant and challenging steps in drug discovery across bioactive natural products. This review describes recent progresses in the methodology of target identification of natural products, highlights examples of target identification utilizing chemical proteomics and biophysical strategies, and discusses the advantages, limitations, applications, and challenges of each strategy.
  • 加载中
    1. [1]

      Koehn, F. E.; Carter, G. T. Nat. Rev. Drug Discov. 2005, 4, 206.  doi: 10.1038/nrd1657

    2. [2]

      Calson, E. E. ACS Chem. Biol. 2010, 5, 639.  doi: 10.1021/cb100105c

    3. [3]

      Gao, Y.; Hu, J.; Ju, Y. Acta Chim. Sinica 2016, 74, 312(in Chinese).
       

    4. [4]

      Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Nat. Chem. 2016, 8, 531.  doi: 10.1038/nchem.2479

    5. [5]

      Xu, Y.; Cheng, J. Chinese Sci. Bull. 2017, 62, 908(in Chinese).
       

    6. [6]

      Schenone, M.; Dancik, V.; Wagner, B. K.; Clemons, P. A. Nat. Chem. Biol. 2013, 9, 232.  doi: 10.1038/nchembio.1199

    7. [7]

      Titov, D. V.; Liu, J. O. Bioorgan. Med. Chem. 2012, 20, 1902.  doi: 10.1016/j.bmc.2011.11.070

    8. [8]

      Rix, U.; Superti-Furga, G. Nat. Chem. Biol. 2009, 5, 616.  doi: 10.1038/nchembio.216

    9. [9]

      Geoghegan, K. F.; Johnson, D. S. Annu. Rep. Med. Chem. 2010, 45, 345.  doi: 10.1016/S0065-7743(10)45021-6

    10. [10]

      Kawatani, M.; Osada, H. MedChemComm 2014, 5, 277.  doi: 10.1039/c3md00276d

    11. [11]

      Wang, C.; Chen, N. Acta Chim. Sinica 2015, 73, 657(in Chinese).
       

    12. [12]

      Harding, M. W.; Galat, A.; Uehling, D. E.; Schreiber, S. L. Nature 1989, 341, 758.  doi: 10.1038/341758a0

    13. [13]

      Taunton, J.; Hassig, C. A.; Schreiber, S. L. Science 1996, 272, 408.  doi: 10.1126/science.272.5260.408

    14. [14]

      Sin, N.; Meng, L.; Wang, M. Q.; Wen, J. J.; Bornmann, W. G.; Crews, C. M. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 6099.  doi: 10.1073/pnas.94.12.6099

    15. [15]

      Griffith, E. C.; Su, Z.; Turk, B. E.; Chen, S.; Chang, Y. H.; Wu, Z.; Biemann, K.; Liu, J. O. Chem. Biol. 1997, 4, 461.  doi: 10.1016/S1074-5521(97)90198-8

    16. [16]

      Griffith, E. C.; Su, Z.; Niwayama, S.; Ramsay, C. A.; Chang, Y.; Liu, J. O. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 15183.  doi: 10.1073/pnas.95.26.15183

    17. [17]

      Kudo, N.; Matsumori, N.; Taoka, H.; Fujiwara, D.; Scheriner, E. P.; Wolff, B.; Yoshida, M.; Horinouchi, S. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9112.  doi: 10.1073/pnas.96.16.9112

    18. [18]

      Low, W. K.; Dang, Y.; Schneider-Poetsch, T.; Shi, Z.; Choi, N. S.; Rzasa, R. M.; Shea, H. A.; Li, S.; Park, K.; Ma, G.; Romo, D.; Liu, J. O. Method. Enzymol. 2007, 431, 303.  doi: 10.1016/S0076-6879(07)31014-8

    19. [19]

      Yamaoka, M.; Sato, K.; Kobayashi, M.; Nishio, N.; Ohkubo, M.; Fujii, T.; Nakajima, H. J. Antibiot. 2005, 58, 654.  doi: 10.1038/ja.2005.90

    20. [20]

      Bargagna-Mohan, P.; Hamza, A.; Kim, Y. E.; Ho, Y. K. A.; Mor-Vaknin, N.; Wendschlag, N.; Liu, J.; Evans, R. M.; Mar-kovitz, D. M.; Zhan, C.; Kim, K. B.; Mohan, R. Chem. Biol. 2007, 14, 623.  doi: 10.1016/j.chembiol.2007.04.010

    21. [21]

      Ki, S. W.; Ishigami, K.; Kitahara, T.; Kasahara, K.; Yoshida, M.; Horinouchi, S. J. Biol. Chem. 2000, 275, 39231.  doi: 10.1074/jbc.M006192200

    22. [22]

      Dong, T.; Li, C.; Wang, X.; Dian, L.; Zhang, X.; Li, L.; Chen, S.; Cao, R.; Li, L.; Huang, N.; He, S.; Lei, X. Nat. Commun. 2015, 6, 6522.  doi: 10.1038/ncomms7522

    23. [23]

      Margarucci, L.; Monti, M. C.; Cassiano, C.; Mozzicafreddo, M.; Angeletti, M.; Riccio, R.; Tosco, A.; Casapullo, A. Chem. Commun. 2013, 49, 5844.  doi: 10.1039/c3cc41858h

    24. [24]

      Cassiano, C.; Margarucci, L.; Exposito, R.; Riccio, R.; Tosco, A.; Casapullo, A.; Monti, M. C. Chem. Commun. 2014, 50, 6043.  doi: 10.1039/C4CC00989D

    25. [25]

      Klaić, L.; Morimoto, R. I.; Silverman, R. B. ACS Chem. Biol. 2012, 7, 928.  doi: 10.1021/cb200539u

    26. [26]

      Li, J.; Casteels, T.; Frogne, T.; Ingvorsen, C.; Honore, C.; Courtney, M.; Huber, K. V. M.; Schminer, N.; Kimmel, R. A.; Ramanov, R. A.; Sturtzel, C.; Lardeau, C.; Klughammer, J.; Farlik, M.; Sdelci, S.; Vieira, A.; Avolio, F.; Briand, F.; Baburin, I.; Majek, P.; Pauler, F. M.; Penz, T.; Stukalov, A.; Gridling, M.; Parapatics, K.; Barbieux, C.; Berishvili, E.; Spittler, A.; Colinge, J.; Bennett, K.; Hering, S.; Sulpice, T.; Bock, C.; Distel, M.; Harkany, T.; Meyer, D.; Superti-Furga, G.; Collombat, R.; Hechsher-Sorensen, J.; Kubicek, S. Cell 2017, 168, 86.  doi: 10.1016/j.cell.2016.11.010

    27. [27]

      Kong, L. M.; Deng, X.; Zuo, Z. L.; Sun, H. D.; Zhao, Q. S.; Li, Y. Oncotarget 2014, 5, 11354.

    28. [28]

      Liu, C.; Yin, Q.; Zhou, H.; Wu, Y.; Pu, J.; Xia, L.; Liu, W.; Huang, X.; Jiang, T.; Wu, M.; He, L.; Zhao, Y.; Wang, X.; Xiao, W.; Chen, H.; Zhao, Q.; Zhou, A.; Wang, L.; Sun, H.; Chen, G. Nat. Chem. Biol. 2012, 8, 486.  doi: 10.1038/nchembio.935

    29. [29]

      Zhao, Q.; Ding, Y.; Deng, Z.; Lee, O. Y.; Gao, P.; Chen, P.; Rose, R. J.; Zhao, H.; Zhang, Z.; Tao, X.; Heck, A. J. R.; Kao, R.; Yang, D. Chem. Sci. 2015, 6, 4124.  doi: 10.1039/C5SC00633C

    30. [30]

      Li, D.; Li, C.; Li, L.; Chen, S.; Wang, L.; Li, Q.; Wang, X.; Lei, X.; Shen, Z. Cell Chem. Biol. 2016, 23, 257.  doi: 10.1016/j.chembiol.2015.08.018

    31. [31]

      Yi, C. M.; Yu, J.; Kim, H.; Lee, N. R.; Kim, S. W.; Lee, N. J.; Lee, J.; Seong, J.; Kim, N. J.; Inn, K. S. Chem. Commun. 2017, 53, 7045.  doi: 10.1039/C7CC02789C

    32. [32]

      Capolupo, A.; Esposito, R.; Zampella, A.; Festa, C.; Roccio, R.; Casapullo, A.; Tosco, A., Monti, M. C. J. Nat. Prod. 2017, 80, 909.  doi: 10.1021/acs.jnatprod.6b00793

    33. [33]

      Kanoh, N.; Kumashiro, S.; Simizu, S.; Kondoh, Y.; Hatakeyama, S.; Tashiro, H.; Osada, H. Angew. Chem. Int. Ed. 2003, 115, 5742.  doi: 10.1002/(ISSN)1521-3757

    34. [34]

      Kanoh, N.; Honda, K.; Simizu, S.; Muroi, M.; Osada, H. Angew. Chem. Int. Ed. 2005, 44, 3559.  doi: 10.1002/(ISSN)1521-3773

    35. [35]

      Hirohama, M.; Kumar, A.; Fukuda, I.; Matsuoka, S.; Igarashi, Y.; Saitoh, H.; Takagi, M.; Shinya, K.; Honda, K.; Kondoh, Y.; Saito, T.; Nakao, Y.; Osada, H.; Zhang, K. Y. J.; Yoshida, M.; Ito, A. ACS Chem. Biol. 2013, 8, 2635.  doi: 10.1021/cb400630z

    36. [36]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.  doi: 10.1002/(ISSN)1521-3773

    37. [37]

      Kalesh, K. A.; Clulow, J. A.; Tate, E. W. Chem. Commun. 2015, 51, 5497.  doi: 10.1039/C4CC09527H

    38. [38]

      Ciepla, P.; Konitsiotis, A. D.; Serwa, R. A.; Masumoto, N.; Leong, W. P.; Dallman, M. J.; Magee, A. I.; Tate, E. W. Chem. Sci. 2014, 5, 4249.  doi: 10.1039/C4SC01600A

    39. [39]

      Kreuzer, J.; Bach, N. C.; Forler, D.; Sieber, S. A. Chem. Sci. 2015, 6, 237.  doi: 10.1039/C4SC02339K

    40. [40]

      Batternberg, O. A.; Yang, Y.; Verhelst, S. H. L.; Sieber, S. A. Mol. BioSyst. 2013, 9, 343.  doi: 10.1039/c2mb25446h

    41. [41]

      Wang, J.; Zhang, J.; Zhang, C.; Wong, Y. K.; Lim, T. K.; Hua, Z.; Liu, B.; Tannenbaum, S. R.; Shen, H.-M.; Lin, Q. Sci. Rep. 2016, 6, 22146.  doi: 10.1038/srep22146

    42. [42]

      Wang, J.; Tan, X. F.; Nguyen, V. S.; Yang, P.; Zhou, J.; Gao, M.; Li, Z.; Lim, T. K.; He, Y.; Ong, C. S.; Lay, Y.; Zhang, J.; Zhu, G.; Lai, S.-L.; Ghosh, D.; Mok, Y. K.; Shen, H.-M.; Lin, Q. Mol. Cell. Proteomics 2014, 13, M113. 029793.

    43. [43]

      Wang, J.; Zhang, C.; Chia, W.; Loh, C.; Li, Z.; Lee, Y.; He, Y.; Yuan, L.; Lim, T.; Liu, M.; Liew, C.; Lee, Y.; Zhang, J.; Lu, N.; Lim, C.; Hua, Z.; Liu, B.; Shen, H.-M.; Tan, S.; Lin, Q. Nat. Commun. 2015, 6, 10111.  doi: 10.1038/ncomms10111

    44. [44]

      Ismail, H. M.; Barton, V.; Phanchana, M.; Charoensutthivarakul, S.; Wong, M. H. L.; Hemingway, J.; Biagini, G. A.; O'Neill, P. M.; Ward, S. A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2080.  doi: 10.1073/pnas.1600459113

    45. [45]

      Zhou, Y.; Li, W.; Xiao, Y. ACS Chem. Biol. 2016, 11, 882.  doi: 10.1021/acschembio.5b01043

    46. [46]

      Zhou, Y.; Li, W.; Zhang, X.; Zhang, H.; Xiao, Y. Chem. Commun. 2016, 52, 14035.  doi: 10.1039/C6CC07581A

    47. [47]

      Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodrigurz, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510.  doi: 10.1038/nchem.1653

    48. [48]

      Nishino, M.; Choy, J. W.; Gushwa, N. N.; Oses-Prieto, J. A.; Koupparis, K.; Burlingame, A. L.; Renslo, A. R.; McKerrow, J. H.; Taunton, J. eLife 2013, 2, e00712.

    49. [49]

      Zheng, B.; Zhu, S.; Wu, X. ACS Chem. Biol. 2015, 10, 115.  doi: 10.1021/cb500758s

    50. [50]

      Yang, J.; Tallman, K. A.; Porter, N. A.; Liebler, D. C. Anal. Chem. 2015, 87, 2535.  doi: 10.1021/ac504685y

    51. [51]

      Wright, M. H.; Tao, Y.; Drechsel, J.; Krysiak, J.; Chamni, S.; Weigert-Munoz, A.; Harvey, N. L.; Romo, D.; Sieber, S. A. Chem. Commun. 2017, DOI:10. 1039/C7CC04990K.  doi: 10.1039/C7CC04990K

    52. [52]

      Yang, M.; Chen, P. Acta Chim. Sinica 2015, 73, 783.  doi: 10.3866/PKU.WHXB201502062

    53. [53]

      Smith, E.; Collins, I. Future Med. Chem. 2015, 7, 159.  doi: 10.4155/fmc.14.152

    54. [54]

      Park, J.; Koh, M.; Koo, J. Y.; Lee, S.; Park, S. B. ACS Chem. Biol. 2015, 11, 44.

    55. [55]

      Kleiner, P.; Heydenreuter, W.; Stahl, M.; Korotkov, V. S.; Sieber, S. A. Angew. Chem. Int. Ed. 2017, 56, 1396.  doi: 10.1002/anie.201605993

    56. [56]

      Lamos, S. M.; Krusemark, C. J.; McGee, C. J.; Scalf, M.; Smith, L. M.; Belshaw, P. J. Angew. Chem. Int. Ed. 2006, 45, 4329.  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      Eirich, J.; Orth, R; Sieber, S. A. J. Am. Chem. Soc. 2011, 133, 12144.  doi: 10.1021/ja2039979

    58. [58]

      Shi, H.; Cheng, X.; Sze, S. K.; Yao, S. Q. Chem. Commun. 2011, 47, 11306.  doi: 10.1039/c1cc14824a

    59. [59]

      Hulce, J. J.; Cognetta, A. B.; Niphakis, M.; Tull, S. E.; Cravatt, B. F. Nat. Methods 2012, 10, 259

    60. [60]

      Zhuang, S.; Li, Q.; Cai, L.; Wang, C.; Lei, X. ACS. Cent. Sci. 2017, 3, 501.  doi: 10.1021/acscentsci.7b00134

    61. [61]

      Konziase, B. Anal. Biochem. 2015, 482, 25.  doi: 10.1016/j.ab.2015.04.020

    62. [62]

      Guo, H.; Xu, J.; Hao, P.; Ding, K.; Li, Z. Chem. Commun. 2017, 53, 9620.  doi: 10.1039/C7CC04190J

    63. [63]

      Lehmann, J.; Richers, J.; Pothig, A.; Sieber, S. A. Chem. Commun. 2017, 53, 107.  doi: 10.1039/C6CC08365J

    64. [64]

      Wang, D.; Cao, Y.; Zheng, L.; Lv, D.; Chen, L.; Xing, X.; Zhu, Z.; Li, X.; Chai, Y. Chem. Commun. 2017, 53, 5020.  doi: 10.1039/C7CC02227A

    65. [65]

      Zhou, Y.; Di, Z.; Li, X.; Shan, Y.; Li, W.; Zhang, H.; Xiao, Y. Chem. Commun. 2017, 53, 8671.  doi: 10.1039/C7CC04345G

    66. [66]

      Wright, M. H.; Fetzer, C.; Sieber, S. A. J. Am. Chem. Soc. 2017, 139, 6152.  doi: 10.1021/jacs.7b01072

    67. [67]

      Tamura, T.; Tsukiji, S.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 2216.  doi: 10.1021/ja209641t

    68. [68]

      Hughes, C. C.; Yang, Y.; Liu, W.; Dorrestein, P. C.; La Clair, J. J.; Fenical, W. J. Am. Chem. Soc. 2009, 131, 12094.  doi: 10.1021/ja903149u

    69. [69]

      Li, G.; Liu, Y.; Liu, Y.; Chen, L.; Wu, S.; Liu, Y.; Li, X. Angew. Chem. Int. Ed. 2013, 52, 9544.  doi: 10.1002/anie.v52.36

    70. [70]

      Park, J.; Oh, S.; Park, S. B. Angew. Chem. Int. Ed. 2012, 51, 5447.  doi: 10.1002/anie.201200609

    71. [71]

      Leriche, G.; Chisholm, L.; Wagner, A. Bioorg. Med. Chem. 2012, 20, 571.  doi: 10.1016/j.bmc.2011.07.048

    72. [72]

      Li, W.; Zhou, Y.; Tang, G.; Xiao, Y. Bioconjugate Chem. 2016, 27, 2828.  doi: 10.1021/acs.bioconjchem.6b00556

    73. [73]

      Barglow, K. T.; Cravatt, B. F. Nat. Methods 2007, 4, 822.  doi: 10.1038/nmeth1092

    74. [74]

      Abegg, D.; Frei, R.; Cerato, L.; Prasad Hari, D.; Wang, C.; Waser, J.; Adibekian, A. Angew. Chem. Int. Ed. 2015, 54, 10852.  doi: 10.1002/anie.201505641

    75. [75]

      Wang, C.; Weerapana, E.; Blewett, M. M.; Cravatt, B. F. Nat. Methods 2014, 11, 79.  doi: 10.1038/nmeth.2759

    76. [76]

      Zhou, Y.; Li, W.; Wang, M.; Zhang, X.; Zhang, H.; Tong, X.; Xiao, Y. Mol. BioSyst. 2017, 13, 83.  doi: 10.1039/C6MB00691D

    77. [77]

      Grossman, E. A.; Ward, C. C.; Spradlin, J. N.; Bateman, L. A.; Huffman, T. R.; Miyamoto, D. K.; Kleinman, J. I.; Nomura, D. K. Cell Chem. Biol. 2017, 24, 1368.  doi: 10.1016/j.chembiol.2017.08.013

    78. [78]

      Tian, C.; Sun, R.; Liu, K.; Fu, L.; Liu, X.; Zhou, W.; Yang, Y.; Yang, J. Cell Chem. Biol. 2017, 24, 1416.  doi: 10.1016/j.chembiol.2017.08.022

    79. [79]

      Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Mol. Cell. Proteomics 2002, 1, 376.  doi: 10.1074/mcp.M200025-MCP200

    80. [80]

      Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Proteomics 2007, 7, 340.  doi: 10.1002/(ISSN)1615-9861

    81. [81]

      Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Hamon, C. Anal. Chem. 2003, 75, 1895.  doi: 10.1021/ac0262560

    82. [82]

      Wang, J.; Gao, L.; Lee, Y. M.; Kalesh, K. A.; Ong, Y. S.; Lim, J.; Jee, J.-E.; Sun, H.; Lee, S. S.; Hua, Z.-C.; Lin, Q. Pharmacol. Therapeut. 2016, 162, 10.  doi: 10.1016/j.pharmthera.2016.01.010

    83. [83]

      Smith, G. P.; Petrenko, V. A. Chem. Rev. 1997, 97, 391.  doi: 10.1021/cr960065d

    84. [84]

      Jin, Y.; Yu, J.; Yu, Y. G. Chem. Biol. 2002, 9, 157.  doi: 10.1016/S1074-5521(02)00096-0

    85. [85]

      Takakusagi, Y.; Takakusagi, K.; Kuramochi, K.; Kobayashi, S.; Sugawara, F.; Sakaguchi, K. Bioorg. Med. Chem. 2007, 15, 7590.  doi: 10.1016/j.bmc.2007.09.002

    86. [86]

      Zhu, H.; Snyder, M. Curr. Opin. Chem. Biol. 2003, 7, 55.  doi: 10.1016/S1367-5931(02)00005-4

    87. [87]

      Lomenick, B.; Hao, R.; Jonai, N.; Chin, R. M.; Aghajan, M.; Warburton, S.; Wang, J.; Wu, R. P.; Gomez, F.; Loo, J. A.; Wohlschlegel, J. A.; Vondriska, T. M.; Pelletier, J.; Herschman, H. R.; Clardy, J.; Clarke, C. F.; Huang, J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 21984.  doi: 10.1073/pnas.0910040106

    88. [88]

      Chin, R. M.; Fu, X.; Pai, M. Y.; Vergnes, L.; Hwang, H.; Deng, G.; Diep, S.; Lomenick, B.; Meli, V. S.; Monsalve, G. C; Hu, E.; Whelan, S. A.; Wang, J. X.; Jung, G.; Solis, G. M.; Fazlollahi, F.; Kaweeteerawat, C.; Quach, A.; Nili, M.; Krall, A. S.; Godwin, H. A.; Chang, H. R.; Faull, K. F.; Guo, F.; Jiang, M.; Trauger, S. A.; Saghatelian, A.; Brass, D.; Christofk, H. R.; Clarke, C. F.; Teitell, M. A.; Petrascheck, M.; Reue, K.; Jung, M. E.; Frand, A. R.; Huang, J. Nature 2014, 510, 397.  doi: 10.1038/nature13264

    89. [89]

      Fleta-Soriano, E.; Martinez, J. P.; Hinkelmann, B.; Gerth, K.; Washausen, P.; Diez, J.; Frank, R.; Sasse, F.; Meyerhans, A. Microb. Cell Fact. 2014, 13, 17.  doi: 10.1186/1475-2859-13-17

    90. [90]

      Hu, Y. -S. Ph. D. Dissertation, Second Military Medical University, Shanghai, 2013(in Chinese).

    91. [91]

      Dal Piaz, F.; Vera Saltos, M. B.; Franceschelli, S.; Forte, G.; Marzocco, S.; Tuccinardi, T.; Poli, G.; Nejad Ebrahimi, S.; Hamburger, M.; De Tommasi, N.; Braca, A. J. Nat. Prod. 2016, 79, 2681.  doi: 10.1021/acs.jnatprod.6b00627

    92. [92]

      Molina, D. M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E. A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Science 2013, 341, 84.  doi: 10.1126/science.1233606

    93. [93]

      Martinez, M. D.; Nordlund, P. Annu. Rev. Phamacol. 2016, 56, 141.  doi: 10.1146/annurev-pharmtox-010715-103715

    94. [94]

      Savitski, M. M.; Reinhard, F. B.; Franken, H.; Werner, T.; Savitski, M. F.; Eberhard, D.; Molina, D. M.; Jafari, R.; Dovega, R. B.; Klaeger, S.; Kuster, B. Science 2014, 346, 1255784.  doi: 10.1126/science.1255784

    95. [95]

      Reinhard, F. B.; Eberhard, D.; Werner, T.; Franken, H.; Childs, D.; Doce, C.; Savitski, M. F.; Huber, W.; Bantscheff, M.; Savitski, M. M.; Drewes, G. Nat. Methods 2015, 12, 1129.  doi: 10.1038/nmeth.3652

    96. [96]

      Huber, K. V.; Olek, K. M.; Müller, A. C.; Tan, C. S. H.; Bennett, K. L.; Colinge, J.; Superti-Furga, G. Nat. Methods 2015, 12, 1055.  doi: 10.1038/nmeth.3590

    97. [97]

      Becher, I.; Werner, T.; Doce, C.; Zaal, E. A.; Tögel, I.; Khan, C. A.; Rueger, A.; Muelbaier, M.; Salzer, E.; Berkers, C. R.; Fitzpatrick, P. F.; Bantscheff, M.; Savitski, M. M. Nat. Chem. Biol. 2016, 12, 908.  doi: 10.1038/nchembio.2185

    98. [98]

      Franken, H.; Mathieson, T.; Childs, D.; Sweetman, G. M.; Werner, T.; Tögel, I.; Doce, C.; Gade, S.; Bantscheff, M.; Drewes, G.; Reinhard, F. B. Nat. Protoc. 2015, 10, 1567.  doi: 10.1038/nprot.2015.101

    99. [99]

      Park, H.; Ha, J.; Koo, J. Y.; Park, J.; Park, S. B. Chem. Sci. 2017, 8, 1127.  doi: 10.1039/C6SC03238A

    100. [100]

      West, G. M.; Tucker, C. L.; Xu, T.; Park, S. K.; Han, X.; Yates, J. R.; Fitzgerald M. C. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 9078.  doi: 10.1073/pnas.1000148107

    101. [101]

      Chan, J. N.; Vuckovic, D.; Sleno, L.; Olsen, J. B.; Pogoutse, O.; Havugimana, P. C.; Hewel, J. A.; Bajaj, N.; Wang, Y.; Musteata, M. F.; Nislw, C.; Emili, A. Mol. Cell. Proteomics 2012, 11, M111. 016642.  doi: 10.1074/mcp.M111.016642

    102. [102]

      Parsons, A. B.; Lopez, A.; Givoni, I. E.; Williams, D. E.; Gray, C. A.; Porter, J.; Chua, G.; Sopko, R.; Brost, R. L.; Ho, C. H.; Wang, J.; Ketela, T.; Brenner, C.; Brill, J. A.; Femandez, G. E.; Lorenz, T. C.; Payne, G. S.; Ishihara, S.; Ohya, Y.; Andrews, B.; Hughes, T. R.; Frey, B. J.; Graham, T. R.; Andersen, R. J.; Boone, C. Cell 2006, 126, 611.  doi: 10.1016/j.cell.2006.06.040

    103. [103]

      Ho, C. H.; Magtanong, L.; Barker, S. L.; Gresham, D.; Nishimura, S.; Natarajan, P.; Koh, J. L.; Porter, J.; Gray, C. A.; Andersen, R. J.; Giaever, G. Nat. Biotech. 2009, 27, 369.  doi: 10.1038/nbt.1534

    104. [104]

      Luesch, H.; Wu, T. Y.; Ren, P.; Gray, N. S.; Schultz, P. G.; Supek, F. Chem. Biol. 2005, 12, 55.  doi: 10.1016/j.chembiol.2004.10.015

    105. [105]

      Smith, A. M.; Ammar, R.; Nislow, C.; Giaever, G. Pharmacol. Therapeut. 2010, 127, 156.  doi: 10.1016/j.pharmthera.2010.04.012

    106. [106]

      Lum, P. Y.; Armour, C. D.; Stepaniants, S. B.; Cavet, G.; Wolf, M. K.; Butler, J. S.; Hinshaw, J. C.; Garnier, P.; Prestwich, G. D.; Leonardson, A.; Garrett-Engele, P.; Leonardson, A. Cell 2004, 116, 121.  doi: 10.1016/S0092-8674(03)01035-3

    107. [107]

      Sopko, R.; Huang, D.; Preston, N.; Chua, G.; Papp, B.; Kafadar, K.; Snyder, M.; Oliver, S. G.; Cyert, M.; Hughes, T. R.; Boone, C.; Andrews, B. Mol. Cell 2006, 21, 319.  doi: 10.1016/j.molcel.2005.12.011

    108. [108]

      Chen, X.; Ung, C. Y.; Chen, Y. Nat. Prod. Rep. 2003, 20, 432.  doi: 10.1039/b303745b

    109. [109]

      Chen, X.; Ji, Z. L.; Chen, Y. Z. Nucleic Acids Res. 2002, 30, 412.  doi: 10.1093/nar/30.1.412

    110. [110]

      Gao, Z.; Li, H.; Zhang, H.; Liu, X.; Kang, L.; Luo, X.; Zhu, W.; Chen, K.; Wang, X.; Jiang, H. BMC Bioinformatics 2008, 9, 104.  doi: 10.1186/1471-2105-9-104

    111. [111]

      Chen, L.; Oughtred, R.; Berman, H. M.; Westbrook, J. Bioinformatics 2004, 20, 2860.  doi: 10.1093/bioinformatics/bth300

    112. [112]

      Ji, Z. L.; Han, L. Y.; Yap, C. W.; Sun, L. Z.; Chen, X.; Chen, Y. Z. Drug Safety 2003, 26, 685.  doi: 10.2165/00002018-200326100-00002

    113. [113]

      Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. Nucleic Acids Res. 2007, 36, D901.
       

    114. [114]

      Zhang, J. X.; Huang, W. J.; Zeng, J. H.; Huang, W. H.; Wang, Y.; Zhao, R.; Han, B. C.; Liu, Q. F.; Chen, Y. Z.; Ji, Z. L. Bioinformatics 2007, 23, 1710.  doi: 10.1093/bioinformatics/btm139

    115. [115]

      Chen, Y. Z.; Ung, C. Y. Am. J. Chin. Med. 2002, 30, 139.  doi: 10.1142/S0192415X02000156

    116. [116]

      Li, H.; Gao, Z.; Kang, L.; Zhang, H.; Yang, K.; Yu, K.; Luo, X.; Zhu, W.; Chen, K.; Shen, J.; Wang, X.; Jiang, H. Nucleic Acids Res. 2006, 34, W219.  doi: 10.1093/nar/gkl114

    117. [117]

      Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. Nucleic Acids Res. 2010, 38, W609.  doi: 10.1093/nar/gkq300

    118. [118]

      Kinnings, S. L.; Jackson, R. M. J. Chem. Inf. Model. 2011, 28, 624.
       

    119. [119]

      Wang, J. C.; Chu, P. Y.; Chen, C. M.; Lin, J. H. Nucleic Acids Res. 2012, 40, W393.  doi: 10.1093/nar/gks496

    120. [120]

      Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E. J. Med. Chem. 2004, 47, 1739.  doi: 10.1021/jm0306430

    121. [121]

      Park, K.; Cho, A. E. J. Ginseng. Res. 2017, 41, 534.  doi: 10.1016/j.jgr.2016.10.005

    122. [122]

      Smith, A. M.; Ammar, R.; Nislow, C.; Giaever, G. Pharmacol. Therapeut. 2010, 127, 156.  doi: 10.1016/j.pharmthera.2010.04.012

    123. [123]

      Rees, M. G.; Seashore-Ludlow, B.; Cheah, J. H.; Adams, D. J.; Price, E. V.; Gill, S.; Javaid, S.; Coletti, M. E.; Jones, V. L.; Bodycombe, N. E.; Soule, C. K.; Alexander, B.; Li, A.; Montgomery, P.; Kotz, J. D.; Hon, C. S.; Munoz, B.; Liefeld, T.; Dancik, V.; Haber, D. A.; Clish, C. B.; Bittker, J. A.; Palmer, M.; Wagner, B. K.; Clemons, P. A.; Shamji, A. F.; Schreiber, S. L. Nat. Chem. Biol. 2016, 12, 109.  doi: 10.1038/nchembio.1986

    124. [124]

      Yue, Q.; Feng, L.; Cao, B.; Liu, M.; Zhang, D.; Wu, W.; Jiang, B.; Yang, M.; Liu, X.; Guo, D. Mol. Cell. Proteomics 2016, 15, 26.  doi: 10.1074/mcp.M115.053272

    125. [125]

      Prieto, J. H.; Koncarevic, S.; Park, S. K.; Yates, J.; Becker, K. PLoS One 2008, 3, e4098.  doi: 10.1371/journal.pone.0004098

    126. [126]

      Kong, Q.; Tong, Q.; Lou, D.; Ding, J.; Zheng, B.; Chen, R.; Zhu, X.; Chen, X.; Dong, K.; Lu, S. Mol. BioSyst. 2015, 11, 1400.  doi: 10.1039/C5MB00074B

    127. [127]

      Hansen, J.; Palmfeldt, J.; Vang, S.; Corydon, T. J.; Gregersen, N.; Bross, P. PLoS One 2011, 6, e26634.  doi: 10.1371/journal.pone.0026634

    128. [128]

      Xu, Y.; Wang, Y.; Yan, L.; Liang, R. M.; Dai, B. D.; Tang, R. J.; Gao, P. H., Jiang, Y. Y. J. Proteome Res. 2009, 8, 5296.  doi: 10.1021/pr9005074

    129. [129]

      D'Aguanno, S.; D'Agnano, I.; De Canio, M.; Rossi, C.; Bernardini, S.; Federici, G.; Urbani, A. Mol. BioSyst. 2012, 8, 1068.  doi: 10.1039/c2mb05498a

    130. [130]

      Towbin, H.; Bair, K. W.; DeCaprio, J. A.; Eck, M. J.; Kim, S.; Kinder, F. R.; Morollo, A.; Mueller, D. R.; Schindler, P.; Song, H. K.; Van Oostrum, J. J. Biol. Chem. 2003, 278, 52964.  doi: 10.1074/jbc.M309039200

    131. [131]

      Futamura, Y.; Kawatani, M.; Kazami, S.; Tanaka, K.; Muroi, M.; Shimizu, T.; Tomita, K.; Watanabe, N.; Osada, H. Chem. Biol. 2012, 19, 1620.  doi: 10.1016/j.chembiol.2012.10.014

    132. [132]

      Futamura, Y.; Yamamoto, K; Osada, H. Biosci. Biotechnol. Biochem. 2017, 81, 28.  doi: 10.1080/09168451.2016.1248365

    133. [133]

      Shoemaker, R. H. Nat. Rev. Cancer 2006, 6, 813.  doi: 10.1038/nrc1951

    134. [134]

      Bai, R.; Paull, K. D.; Herald, C. L.; Malspeis, L.; Pettit, G. R.; Hamel, E. J. Biol. Chem. 1991, 266, 15882.
       

    135. [135]

      Kurita, K. L.; Glassey, E.; Linington, R. G. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 11999.  doi: 10.1073/pnas.1507743112

    136. [136]

      Lu, Y.; Zhang, Y.; Li, L.; Feng, X.; Ding, S.; Zheng, W.; Li, J.; Shen, P. Chem. Biol. 2014, 21, 246.  doi: 10.1016/j.chembiol.2013.12.009

    137. [137]

      Leuenroth, S. J.; Okuhara, D.; Shotwell, J. D.; Markowitz, G. S.; Yu, Z.; Somlo, S.; Crews, C. M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 4389.  doi: 10.1073/pnas.0700499104

    138. [138]

      Corson, T. W.; Cavga, H.; Aberle, N.; Crews, C. M. ChemBioChem 2001, 12, 1767.

    139. [139]

      Vispé, S.; DeVries, L.; Créancier, L.; Besse, J.; Bréand, S.; Hobson, D. J.; Svejstrup, J. Q.; Annereau, J. P.; Cussac, D.; Dumontet, C.; Guilbaud, N. Mol. Cancer Therapeut. 2009, 8, 2780.  doi: 10.1158/1535-7163.MCT-09-0549

    140. [140]

      Leuenroth, S. J.; Crews, C. M. Chem. Biol. 2005, 12, 1259.  doi: 10.1016/j.chembiol.2005.09.009

    141. [141]

      McCallum, C.; Kwon, S.; Leavitt, P.; Shen, D. M.; Liu, W.; Gurnett, A. Immunobiology 2007, 212, 549.  doi: 10.1016/j.imbio.2007.02.002

    142. [142]

      Titov, D. V.; Gilman, B.; He, Q.-L.; Bhat, S.; Low, W. K.; Dang, Y.; Smeaton, M.; Demain, A. L.; Miller, P. S.; Kugel, J. F.; Goodrich, J. A.; Liu, J. O. Nat. Chem. Biol. 2011, 7, 182.  doi: 10.1038/nchembio.522

    143. [143]

      He, Q. L.; Titov, D. V.; Li, J.; Tan, M.; Ye, Z.; Zhao, Y.; Romo, D.; Liu, J. O. Angew. Chem. Int. Ed. 2015, 54, 1859.  doi: 10.1002/anie.201408817

    144. [144]

      McClary, B.; Zinshteyn, B.; Meyer, M.; Jouanneau, M.; Pellegrino, S.; Yusupova, G.; Schuller, A.; Reyes, J. C. P.; Lu, J.; Guo, Z.; Ayinde, S.; Luo, C.; Dang, Y.; Romo, D.; Yusupov, M.; Green, R.; Liu, J. O. Cell Chem. Biol. 2017, 24, 605.  doi: 10.1016/j.chembiol.2017.04.006

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    4. [4]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    5. [5]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    6. [6]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    7. [7]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    8. [8]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    9. [9]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    12. [12]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    13. [13]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    14. [14]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    15. [15]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    16. [16]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    17. [17]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    18. [18]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    19. [19]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    20. [20]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

Metrics
  • PDF Downloads(631)
  • Abstract views(13602)
  • HTML views(4947)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return